Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_298_a14, author = {S. Pinchuk and R. Shafikov and A. Sukhov}, title = {Some {Aspects} of {Holomorphic} {Mappings:} {A} {Survey}}, journal = {Informatics and Automation}, pages = {227--266}, publisher = {mathdoc}, volume = {298}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a14/} }
S. Pinchuk; R. Shafikov; A. Sukhov. Some Aspects of Holomorphic Mappings: A Survey. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 227-266. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a14/
[1] Airapetyan R. A., “Prodolzhenie CR-funktsii s kusochno-gladkikh CR-mnogoobrazii”, Mat. sb., 134:1 (1987), 108–118 | MR | Zbl
[2] Alexander H., “Holomorphic mappings from the ball and polydisc”, Math. Ann., 209 (1974), 249–256 | DOI | MR | Zbl
[3] Alexander H., “Proper holomorphic mappings in $\mathbf C^n$”, Indiana Univ. Math. J., 26 (1977), 137–146 | DOI | MR | Zbl
[4] Alexander H., “Gromov's method and Bennequin's problem”, Invent. math., 125:1 (1996), 135–148 | DOI | MR | Zbl
[5] Alexander H., “Disks with boundaries in totally real and Lagrangian manifolds”, Duke Math. J., 100:1 (1999), 131–138 | DOI | MR | Zbl
[6] Arnold V. I., “Symplectic geometry and topology”, J. Math. Phys., 41:6 (2000), 3307–3343 | DOI | MR | Zbl
[7] Balogh Z. M., Bonk M., “Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains”, Comment. math. Helv., 75:3 (2000), 504–533 | DOI | MR | Zbl
[8] Baouendi M. S., Ebenfelt P., Rothschild L. P., “Algebraicity of holomorphic mappings between real algebraic sets in $\mathbf C^n$”, Acta math., 177:2 (1996), 225–273 | DOI | MR | Zbl
[9] Baouendi M. S., Ebenfelt P., Rothschild L. P., Real submanifolds in complex space and their mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl
[10] Baouendi M. S., Ebenfelt P., Rothschild L. P., “Local geometric properties of real submanifolds in complex space”, Bull. Amer. Math. Soc., 37:3 (2000), 309–336 | DOI | MR | Zbl
[11] Baouendi M. S., Jacobowitz H., Trèves F., “On the analyticity of CR mappings”, Ann Math. Ser. 2, 122 (1985), 365–400 | DOI | MR | Zbl
[12] Baouendi M. S., Rothschild L. P., “Germs of CR maps between real analytic hypersurfaces”, Invent. math., 93:3 (1988), 481–500 | DOI | MR | Zbl
[13] Baouendi M. S., Treves F., “A property of the functions and distributions annihilated by a locally integrable system of complex vector fields”, Ann. Math. Ser. 2, 113 (1981), 387–421 | DOI | MR | Zbl
[14] Bedford E., “Proper holomorphic mappings from domains with real analytic boundary”, Amer. J. Math., 106 (1984), 745–760 | DOI | MR | Zbl
[15] Bedford E., “Proper holomorphic mappings”, Bull. Amer. Math. Soc., 10 (1984), 157–175 | DOI | MR | Zbl
[16] Bedford E., Dadok J., “Bounded domains with prescribed group of automorphisms”, Comment. math. Helv., 62 (1987), 561–572 | DOI | MR | Zbl
[17] Bedford E., Gaveau B., “Envelopes of holomorphy of certain 2-spheres in $\mathbf C^2$”, Amer. J. Math., 105:4 (1983), 975–1009 | DOI | MR | Zbl
[18] Bedford E., Klingenberg W., “On the envelope of holomorphy of a 2-sphere in $\mathbb C^2$”, J. Amer. Math. Soc., 4:3 (1991), 623–646 | MR | Zbl
[19] Bedford E., Pinchuk S. I., “Oblasti v $\mathbf C^2$ s nekompaktnymi gruppami golomorfnykh avtomorfizmov”, Mat. sb., 135:2 (1988), 147–157 | Zbl
[20] Bedford E., Pinchuk S., “Domains in $\mathbf C^{n+1}$ with noncompact automorphism group”, J. Geom. Anal., 1:3 (1991), 165–191 | DOI | MR | Zbl
[21] Bedford E., Pinchuk S. I., “Vypuklye oblasti s nekompaktnymi gruppami avtomorfizmov”, Mat. sb., 185:5 (1994), 3–26 | Zbl
[22] Bedford E., Pinchuk S., “Domains in $\mathbf C^2$ with noncompact automorphism groups”, Indiana Univ. Math. J., 47:1 (1998), 199–222 | DOI | MR | Zbl
[23] Bell S., Catlin D., “Boundary regularity of proper holomorphic mappings”, Duke Math. J., 49 (1982), 385–369 | DOI | MR
[24] Bell S., Catlin D., “Regularity of CR mappings”, Math. Z., 199:3 (1988), 357–368 | DOI | MR | Zbl
[25] Berteloot F., “Hölder continuity of proper holomorphic mappings”, Stud. math., 100:3 (1991), 229–235 | DOI | MR | Zbl
[26] Berteloot F., “A remark on local continuous extension of proper holomorphic mappings”, The Madison symposium on complex analysis, Contemp. Math., 137, Amer. Math. Soc., Providence, RI, 1992, 79–83 | DOI | MR
[27] Berteloot F., “Holomorphic vector fields and proper holomorphic self-maps of Reinhardt domains”, Ark. Mat., 36:2 (1998), 241–254 | DOI | MR | Zbl
[28] Berteloot F., “Principe de Bloch et estimations de la métrique de Kobayashi des domaines de $\mathbf C^2$”, J. Geom. Anal., 13:1 (2003), 29–37 | DOI | MR | Zbl
[29] Berteloot F., “Méthodes de changement d'échelles en analyse complexe”, Ann. fac. sci. Toulouse. Math. Sér. 6, 15:3 (2006), 427–483 | DOI | MR | Zbl
[30] Berteloot F., Pinchuk S., “Proper holomorphic mappings between bounded complete Reinhardt domains in $\mathbf C^2$”, Math. Z., 219:3 (1995), 343–356 | DOI | MR | Zbl
[31] Boas H. P., Straube E. J., “Sobolev estimates for the $\overline \partial $-Neumann operator on domains in $\mathbf C^n$ admitting a defining function that is plurisubharmonic on the boundary”, Math. Z., 206:1 (1991), 81–88 | DOI | MR | Zbl
[32] Bochner S., Martin W. T., Several complex variables, Princeton Univ. Press, Princeton, 1948 | MR | Zbl
[33] Bracci F., Gaussier H., Horosphere topology, 2016, arXiv: 1605.04119 [math.CV]
[34] Burns D. (Jr.), Shnider S., “Spherical hypersurfaces in complex manifolds”, Invent. math., 33 (1976), 223–246 | DOI | MR | Zbl
[35] Burns D. (Jr.), Shnider S., “Geometry of hypersurfaces and mapping theorems in $\mathbf C^n$”, Comment. math. Helv., 54 (1979), 199–217 | DOI | MR | Zbl
[36] Burns D. (Jr.), Shnider S., “Projective connections in CR geometry”, Manuscr. math., 33 (1980), 1–26 | DOI | MR | Zbl
[37] Cartan É., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl., 11 (1932), 17–90 | DOI | MR
[38] Catlin D., “Necessary conditions for subellipticity of the $\overline \partial $-Neumann problem”, Ann. Math. Ser. 2, 117 (1983), 147–171 | DOI | MR | Zbl
[39] Catlin D., “Global regularity of the Neumann $\overline \partial $-problem”, Complex analysis of several variables, Proc. Symp. Pure Math., 41, Amer. Math. Soc., Providence, RI, 1984, 39–49 | DOI | MR
[40] Catlin D., “Boundary invariants of pseudoconvex domains”, Ann. Math. Ser. 2, 120 (1984), 529–586 | DOI | MR | Zbl
[41] Catlin D., “Regularity of solutions of the $\overline \partial $-Neumann problem”, Proc. Int. Congr. Math. (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 708–714 | MR
[42] Catlin D., “Subelliptic estimates for the $\overline \partial $-Neumann problem on pseudoconvex domains”, Ann. Math. Ser. 2, 126 (1987), 131–191 | DOI | MR | Zbl
[43] Catlin D. W., “Estimates of invariant metrics on pseudoconvex domains of dimension two”, Math. Z., 200:3 (1989), 429–466 | DOI | MR | Zbl
[44] Chern S.-S., “On the projective structure of a real hypersurface in $\mathsf C_{n+1}$”, Math. Scand., 36 (1975), 74–82 | DOI | MR | Zbl
[45] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta math., 133 (1974), 219–271 | DOI | MR
[46] Chirka E. M., “Regulyarnost granits analiticheskikh mnozhestv”, Mat. sb., 117:3 (1982), 291–336 | MR
[47] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR
[48] Chirka E. M., “Vvedenie v geometriyu $CR$-mnogoobrazii”, UMN, 46:1 (1991), 81–164 | MR | Zbl
[49] Chirka E. M., Coupet B., Sukhov A. B., “On boundary regularity of analytic discs”, Mich. Math. J., 46:2 (1999), 271–279 | DOI | MR | Zbl
[50] Cho S., “A lower bound on the Kobayashi metric near a point of finite type in $\mathbb C^n$”, J. Geom. Anal., 2:4 (1992), 317–325 | DOI | MR | Zbl
[51] Christ M., “Global $C^\infty $ irregularity of the $\overline \partial $-Neumann problem for worm domains”, J. Amer. Math. Soc., 9:4 (1996), 1171–1185 | DOI | MR | Zbl
[52] Coupet B., Meylan F., Sukhov A., “Holomorphic maps of algebraic CR manifolds”, Int. Math. Res. Not., 1999:1 (1999), 1–29 | DOI | MR | Zbl
[53] Coupet B., Pan Y., Sukhov A., “On proper holomorphic mappings from domains with $\mathbf T$-action”, Nagoya Math. J., 154 (1999), 57–72 | DOI | MR | Zbl
[54] Coupet B., Pan Y., Sukhov A., “Proper holomorphic self-maps of quasi-circular domains in $\mathbf C^2$”, Nagoya Math. J., 164 (2001), 1–16 | DOI | MR | Zbl
[55] Coupet B., Pinchuk S., Sukhov A., “On boundary rigidity and regularity of holomorphic mappings”, Int. J. Math., 7:5 (1996), 617–643 | DOI | MR | Zbl
[56] Coupet B., Sukhov A., “Reflection principle and boundary properties of holomorphic mappings”, J. Math. Sci., 125:6 (2005), 825–930 | DOI | MR | Zbl
[57] D'Angelo J. P., “Real hypersurfaces, orders of contact, and applications”, Ann. Math. Ser. 2, 115 (1982), 615–637 | DOI | MR | Zbl
[58] Diederich K., Fornaess J. E., “Pseudoconvex domains: An example with nontrivial nebenhülle”, Math. Ann., 225 (1977), 275–292 | DOI | MR | Zbl
[59] Diederich K., Fornaess J. E., “Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions”, Invent. math., 39:2 (1977), 129–141 | DOI | MR | Zbl
[60] Diederich K., Fornaess J. E., “Pseudoconvex domains with real-analytic boundary”, Ann. Math. Ser. 2, 107 (1978), 371–384 | DOI | MR | Zbl
[61] Diederich K., Fornaess J. E., “Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary”, Ann. Math. Ser. 2, 110 (1979), 575–592 | DOI | MR | Zbl
[62] Diederich K., Fornaess J. E., “Boundary regularity of proper holomorphic mappings”, Invent. math., 67 (1982), 363–384 | DOI | MR | Zbl
[63] Diederich K., Fornaess J. E., “Proper holomorphic mappings between real-analytic pseudoconvex domains in $\mathbb C^n$”, Math. Ann., 282 (1988), 681–700 | DOI | MR | Zbl
[64] Diederich K., Pinchuk S., “Reflection principle in higher dimensions”, Proc. Int. Congr. Math. (Berlin, 1998), v. II, Doc. Math. J. DMV, Univ. Bielefeld, Bielefeld, 1998, 703–712 | MR
[65] Diederich K., Pinchuk S., “Proper holomorphic maps in dimension 2 extend”, Indiana Univ. Math. J., 44:4 (1995), 1089–1126 | DOI | MR | Zbl
[66] Diederich K., Pinchuk S., “Regularity of continuous CR maps in arbitrary dimension”, Mich. Math. J., 51:1 (2003), 111–140 | DOI | MR | Zbl
[67] Diederich K., Pinchuk S., “Analytic sets extending the graphs of holomorphic mappings”, J. Geom. Anal., 14:2 (2004), 231–239 | DOI | MR | Zbl
[68] Diederich K., Pinchuk S., “The geometric reflection principle in several complex variables: A survey”, Complex Var. Elliptic Eqns., 54:3–4 (2009), 223–241 | DOI | MR | Zbl
[69] Donaldson S. K., “Holomorphic discs and the complex Monge–Ampère equation”, J. Symplectic Geom., 1:2 (2002), 171–196 | DOI | MR | Zbl
[70] Drinoveč Drnovsek B., Forstnerič F., “Holomorphic curves in complex spaces”, Duke Math. J., 139:2 (2007), 203–253 | DOI | MR | Zbl
[71] Duval J., Gayet D., “Riemann surfaces and totally real tori”, Comment. math. Helv., 89:2 (2014), 299–312 | DOI | MR | Zbl
[72] Efimov A. M., “Obobschenie teoremy Vonga–Rozeya dlya neogranichennogo sluchaya”, Mat. sb., 186:7 (1995), 41–50 | MR | Zbl
[73] Fefferman C., “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. math., 26 (1974), 1–65 | DOI | MR | Zbl
[74] Fornaess J. E., Løw E., “Proper holomorphic mappings”, Math. Scand., 58 (1986), 311–322 | DOI | MR | Zbl
[75] Fornaess J. E., Sibony N., “Construction of p.s.h. functions on weakly pseudoconvex domains”, Duke Math. J., 58:3 (1989), 633–655 | DOI | MR | Zbl
[76] Forstnerič F., “Embedding strictly pseudoconvex domains into balls”, Trans. Amer. Math. Soc., 295 (1986), 347–368 | DOI | MR | Zbl
[77] Forstnerič F., “Proper holomorphic maps from balls”, Duke Math. J., 53 (1986), 427–441 | DOI | MR | Zbl
[78] Forstnerič F., “Extending proper holomorphic mappings of positive codimension”, Invent. math., 95:1 (1989), 31–61 | DOI | MR
[79] Forstnerič F., “An elementary proof of Fefferman's theorem”, Expo. math., 10:2 (1992), 135–149 | MR | Zbl
[80] Forstnerič F., “Proper holomorphic mappings: A survey”, Several complex variables, Proc. Mittag-Leffler Inst. (Stockholm, 1987–1988), Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993, 297–363 | MR
[81] Forstnerič F., “Holomorphic automorphisms of $\mathbf C^n$: A survey”, Complex analysis and geometry, Proc. Conf. (Trento, 1995), Lect. Notes Pure Appl. Math., 173, M. Dekker, New York, 1996, 173–199 | MR | Zbl
[82] Forstnerič F., “Most real analytic Cauchy–Riemann manifolds are nonalgebraizable”, Manuscr. math., 115 (2004), 489–494 | DOI | MR | Zbl
[83] Forstnerič F., Stein manifolds and holomorphic mappings: The homotopy principle in complex analysis, Springer, Berlin, 2011 | MR | Zbl
[84] Forstnerič F., Globevnik J., “Discs in pseudoconvex domains”, Comment. math. Helv., 67:1 (1992), 129–145 | DOI | MR | Zbl
[85] Forstnerič F., Rosay J.-P., “Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings”, Math. Ann., 279 (1987), 239–252 | DOI | MR | Zbl
[86] Frankel S., “Complex geometry of convex domains that cover varieties”, Acta Math., 163 (1989), 109–149 | DOI | MR | Zbl
[87] Greene R. E., Kim K.-T., Krantz S. G., The geometry of complex domains, Prog. Math., 291, Birkhäuser, Basel, 2011 | MR | Zbl
[88] Greene R. E., Krantz S. G., “Characterizations of certain weakly pseudoconvex domains with non-compact automorphism groups”, Complex analysis, Semin. (Univ. Park, 1986), Lect. Notes Math., 1268, Springer, Berlin, 1987, 121–157 | DOI | MR
[89] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. math., 82 (1985), 307–347 | DOI | MR | Zbl
[90] Isaev A., Lectures on the automorphism groups of Kobayashi-hyperbolic manifolds, Lect. Notes Math., 1902, Springer, Berlin, 2007 | MR | Zbl
[91] Isaev A. V., Krantz S. G., “Domains with non-compact automorphism group: A survey”, Adv. Math., 146:1 (1999), 1–38 | DOI | MR | Zbl
[92] Isaev A. V., Kruzhilin N. G., “Proper holomorphic maps between Reinhardt domains in $\mathbb C^2$”, Mich. Math. J., 54:1 (2006), 33–63 | DOI | MR
[93] Hachtroudi M., Les espaces d'éléments à connexion projective normale, Hermann, Paris, 1937 | MR
[94] Khenkin G. M., “Analiticheskii poliedr golomorfno ne ekvivalenten strogo psevdovypukloi oblasti”, DAN SSSR, 210:5 (1973), 1026–1029
[95] Henkin G. M., Novikov R. G., “Proper mappings of classical domains”, Linear and complex analysis problem book: 199 research problems, Lect. Notes Math., 1043, Springer, Berlin, 1984, 625–628
[96] Hörmander L., Wermer J., “Uniform approximation on compact sets in $C^n$”, Math. Scand., 23 (1968), 5–21 | DOI | MR | Zbl
[97] Huang X., “A removable singularity property for CR mappings between real analytic hypersurfaces”, Commun. Partial Diff. Eqns., 25:1–2 (2000), 299–317 | DOI | MR | Zbl
[98] Kerner H., “Überlagerungen und Holomorphiehüllen”, Math. Ann., 144 (1961), 126–134 | DOI | MR | Zbl
[99] Khurumov Yu. V., “Granichnaya gladkost sobstvennykh golomorfnykh otobrazhenii strogo psevdovypuklykh oblastei”, Mat. zametki, 48:6 (1990), 149–150 | MR | Zbl
[100] Kohn J. J., “Harmonic integrals on strongly pseudo-convex manifolds. I”, Ann. Math. Ser. 2, 78 (1963), 112–148 | DOI | MR | Zbl
[101] Kossovskiy I., Lamel B., “New extension phenomena for solutions of tangential Cauchy–Riemann equations”, Commun. Partial Diff. Eqns., 41:6 (2016), 925–951 | DOI | MR | Zbl
[102] Kossovskiy I., Shafikov R., “Analytic continuation of holomorphic mappings from nonminimal hypersurfaces”, Indiana Univ. Math. J., 62:6 (2013), 1891–1916 | DOI | MR | Zbl
[103] Kossovskiy I., Shafikov R., “Analytic differential equations and spherical real hypersurfaces”, J. Diff. Geom., 102:1 (2016), 67–126 | DOI | MR | Zbl
[104] Kossovskiy I., Shafikov R., “Divergent CR-equivalences and meromorphic differential equations”, J. Eur. Math. Soc., 18:12 (2016), 2785–2819 | DOI | MR | Zbl
[105] Krantz S. G., “The automorphism groups of domains in complex space: A survey”, Quaest. math., 36:2 (2013), 225–251 | DOI | MR | Zbl
[106] Kruzhilin N. G., “Golomorfnye avtomorfizmy giperbolicheskikh oblastei Reinkharta”, Izv. AN SSSR. Ser. mat., 52:1 (1988), 16–40 | MR | Zbl
[107] Kruzhilin N. G., “Dvumernye sfery na granitsakh psevdovypuklykh oblastei v $\mathbf C^2$”, Izv. AN SSSR. Ser. mat., 55:6 (1991), 1194–1237
[108] Lempert L., “La métrique de Kobayashi et la représentation des domaines sur la boule”, Bull. Soc. math. France, 109 (1981), 427–474 | DOI | MR | Zbl
[109] Lempert L., “Holomorphic invariants, normal forms, and the moduli space of convex domains”, Ann. Math. Ser. 2, 128:1 (1988), 43–78 | DOI | MR | Zbl
[110] Lewy H., On the boundary behavior of holomorphic mappings, Contrib. Cent. Linceo Interdisciplinare Sci. Mat. Appl., 35, Accad. Naz. Lincei, Roma, 1977
[111] Løw E., “Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls”, Math. Z., 190 (1985), 401–410 | DOI | MR | Zbl
[112] Merker J., “On the partial algebraicity of holomorphic mappings between two real algebraic sets”, Bull. Soc. math. France, 129:4 (2001), 547–591 | DOI | MR | Zbl
[113] Merker J., “On the local geometry of generic submanifolds of $\mathbb C^n$ and the analytic reflection principle”, J. Math. Sci., 125:6 (2005), 751–824 | DOI | MR | Zbl
[114] Merker J., “Lie symmetries and CR geometry”, J. Math. Sci., 154:6 (2008), 817–922 | DOI | MR | Zbl
[115] Nemirovskii S. Yu., Shafikov R. G., “Uniformizatsiya strogo psevdovypuklykh oblastei. I, II”, Izv. RAN. Ser. mat., 69:6 (2005), 115–130 ; 131–138 | DOI | MR | Zbl | Zbl
[116] Nirenberg L., Webster S., Yang P., “Local boundary regularity of holomorphic mappings”, Commun. Pure Appl. Math., 33 (1980), 305–338 | DOI | MR | Zbl
[117] Pinchuk S. I., “Granichnaya teorema edinstvennosti dlya golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Mat. zametki, 15:2 (1974), 205–212
[118] Pinchuk S. I., “O sobstvennykh golomorfnykh otobrazheniyakh strogo psevdovypuklykh oblastei”, Sib. mat. zhurn., 15:4 (1974), 909–917 | MR
[119] Pinchuk S. I., “Teorema Bogolyubova ob “ostrie klina” dlya porozhdayuschikh mnogoobrazii”, Mat. sb., 94:3 (1974), 468–482 | Zbl
[120] Pinchuk S. I., “Ob analiticheskom prodolzhenii golomorfnykh otobrazhenii”, Mat. sb., 98:3 (1975), 416–435 | MR
[121] Pinchuk S. I., “O golomorfnykh otobrazheniyakh veschestvenno analiticheskikh giperpoverkhnostei”, Mat. sb., 105:4 (1978), 574–593 | MR | Zbl
[122] Pinchuk S. I., “Sobstvennye golomorfnye otobrazheniya strogo psevdovypuklykh oblastei”, DAN SSSR, 241:1 (1978), 30–33 | MR | Zbl
[123] Pinchuk S. I., Analiticheskoe prodolzhenie golomorfnykh otobrazhenii i zadachi golomorfnoi klassifikatsii mnogomernykh oblastei, Dis. ... dokt. fiz.-mat. nauk, Chelyab. politekh. in-t, Chelyabinsk, 1979
[124] Pinchuk S. I., “Oblasti s nekompaktnymi gruppami golomorfnykh avtomorfizmov”, Vsesoyuznyi simpozium po teorii approksimatsii funktsii v kompleksnoi oblasti, Tez. dokl. (Ufa, 1980), Izd-vo Bash. fil. AN SSSR, Ufa, 1980, 86–87
[125] Pinchuk S. I., “Golomorfnye otobrazheniya v $\mathbf C^n$ i problema golomorfnoi ekvivalentnosti”, Kompleksnyi analiz–mnogie peremennye-3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 9, VINITI, M., 1986, 195–223
[126] Pinchuk S., “The scaling method and holomorphic mappings”, Several complex variables and complex geometry, Proc. Summer Res. Inst. (Santa Cruz, CA, 1989), v. 1, Proc. Symp. Pure Math., 52, Amer. Math. Soc., Providence, RI, 1991, 151–162 | DOI | MR
[127] Pinchuk S. I., Khasanov S. V., “Asimptoticheski golomorfnye funktsii i ikh primeneniya”, Mat. sb., 134:4 (1987), 546–555 | Zbl
[128] Pinchuk S., Shafikov R., “Critical sets of proper holomorphic mappings”, Proc. Amer. Math. Soc., 143:10 (2015), 4335–4345 | DOI | MR | Zbl
[129] Pinchuk S., Sukhov A., “Extension of CR maps of positive codimension”, Tr. MIAN, 253, 2006, 267–276 | MR | Zbl
[130] Pinchuk S. I., Tsyganov Sh. I., “Gladkost CR-otobrazhenii strogo psevdovypuklykh giperpoverkhnostei”, Izv. AN SSSR. Ser. mat., 53:5 (1989), 1120–1129
[131] Poincaré H., “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl
[132] Range R. M., Holomorphic functions and integral representations in several complex variables, Grad. Texts Math., 108, Springer, New York, 1986 | DOI | MR | Zbl
[133] Rosay J.-P., “Sur une caractérisation de la boule parmi les domaines de $\mathbf C^n$ par son groupe d'automorphismes”, Ann. Inst. Fourier, 29:4 (1979), 91–97 | DOI | MR | Zbl
[134] Rudin W., “Holomorphic maps that extend to automorphisms of a ball”, Proc. Amer. Math. Soc., 81 (1981), 429–432 | DOI | MR | Zbl
[135] Saerens R., Zame W. R., “The isometry groups of manifolds and the automorphism groups of domains”, Trans. Amer. Math. Soc., 301 (1987), 413–429 | DOI | MR | Zbl
[136] Segre B., “Intorno al problema di Poincaré della rappresentazione pseudoconforme”, Atti Accad. Naz. Lincei. Rend. Ser. 6, 13 (1931), 676–683
[137] Shafikov R., “Analytic continuation of germs of holomorphic mappings between real hypersurfaces in $\mathbb C^n$”, Mich. Math. J., 47:1 (2000), 133–149 | DOI | MR | Zbl
[138] Sharipov R., Sukhov A., “On $CR$-mappings between algebraic Cauchy–Riemann manifolds and separate algebraicity for holomorphic functions”, Trans. Amer. Math. Soc., 348:2 (1996), 767–780 | DOI | MR | Zbl
[139] Sibony N., “A class of hyperbolic manifolds”, Recent developments in several complex variables, Proc. Conf. (Princeton Univ., 1979), Ann. Math. Stud., 100, Princeton Univ. Press, Princeton, NJ, 1981, 357–372 | MR | Zbl
[140] Sibony N., “Une classe de domaines pseudoconvexes”, Duke Math. J., 55 (1987), 299–319 | DOI | MR | Zbl
[141] Sibony N., “Some aspects of weakly pseudoconvex domains”, Several complex variables and complex geometry, Proc. Summer Res. Inst. (Santa Cruz, CA, 1989), v. 1, Proc. Symp. Pure Math., 52, Amer. Math. Soc., Providence, RI, 1991, 199–231 | DOI | MR
[142] Sukhov A. B., “O nepreryvnom prodolzhenii i zhestkosti golomorfnykh otobrazhenii mezhdu oblastyami s kusochno gladkimi granitsami”, Mat. sb., 185:8 (1994), 115–128 | Zbl
[143] Sukhov A. B., “O granichnoi regulyarnosti golomorfnykh otobrazhenii”, Mat. sb., 185:12 (1994), 131–142 | Zbl
[144] Sukhov A. B., “O preobrazovaniyakh analiticheskikh CR-struktur”, Izv. RAN. Ser. mat., 67:2 (2003), 101–132 | DOI | MR | Zbl
[145] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | DOI | MR | Zbl
[146] Tresse A., Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega (x,y,y')$, Preisschr. Fürstlich Jablon. Ges., 32, S. Hirzel, Leiptzig, 1896
[147] Tumanov A. E., “Geometriya $CR$-mnogoobrazii”, Kompleksnyi analiz–mnogie peremennye-3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 9, VINITI, M., 1986, 225–246
[148] Tumanov A. E., “Prodolzhenie CR-funktsii v klin”, Mat. sb., 181:7 (1990), 951–964 | Zbl
[149] Tumanov A. E., Khenkin G. M., “Lokalnaya kharakterizatsiya analiticheskikh avtomorfizmov klassicheskikh oblastei”, DAN SSSR, 267:4 (1982), 796–799 | MR | Zbl
[150] Tumanov A. E., Khenkin G. M., “Lokalnaya kharakterizatsiya golomorfnykh avtomorfizmov oblastei Zigelya”, Funkts. analiz i ego pril., 17:4 (1983), 49–61 | MR | Zbl
[151] Verma K., “A characterization of domains in $\mathbf C^2$ with noncompact automorphism group”, Math. Ann., 344:3 (2009), 645–701 | DOI | MR | Zbl
[152] Vitushkin A. G., “Veschestvenno-analiticheskie giperpoverkhnosti kompleksnykh mnogoobrazii”, UMN, 40:2 (1985), 3–31 | MR | Zbl
[153] Vitushkin A. G., “Golomorfnye otobrazheniya i geometriya poverkhnostei”, Kompleksnyi analiz–mnogie peremennye-1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 7, VINITI, M., 1985, 167–226 | MR
[154] Vitushkin A. G., Ezhov V. V., Kruzhilin N. G., “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, DAN SSSR, 270:2 (1983), 271–274 | MR | Zbl
[155] Webster S. M., “On the mapping problem for algebraic real hypersurfaces”, Invent. math., 43 (1977), 53–68 | DOI | MR | Zbl
[156] Webster S. M., “On the transformation group of a real hypersurface”, Trans. Amer. Math. Soc., 231 (1977), 179–190 | DOI | MR | Zbl
[157] Webster S. M., “On the reflection principle in several complex variables”, Proc. Amer. Math. Soc., 71:1 (1978), 26–28 | DOI | MR | Zbl
[158] Winkelmann J., “Realizing countable groups as automorphism groups of Riemann surfaces”, Doc. math. J. DMV., 6, 2001, 413–417 | MR | Zbl
[159] Winkelmann J., “Realizing connected Lie groups as automorphism groups of complex manifolds”, Comment. math. Helv., 79:2 (2004), 285–299 | DOI | MR | Zbl
[160] Wong B., “Characterization of the unit ball in $\mathbb C^n$ by its automorphism group”, Invent. math., 41 (1977), 253–257 | DOI | MR | Zbl
[161] Zaitsev D., “Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces”, Acta math., 183:2 (1999), 273–305 | DOI | MR | Zbl
[162] Zimmer A. M., “Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type”, Math. Ann., 365:3–4 (2016), 1425–1498 | DOI | MR | Zbl
[163] Zimmer A. M., “Characterizing domains by the limit set of their automorphism group”, Adv. Math., 308 (2017), 438–482, arXiv: 1506.07852v2 [math.CV] | DOI | MR | Zbl