Some Aspects of Holomorphic Mappings: A Survey
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 227-266

Voir la notice de l'article provenant de la source Math-Net.Ru

This expository paper is concerned with the properties of proper holomorphic mappings between domains in complex affine spaces. We discuss some of the main geometric methods of this theory, such as the reflection principle, the scaling method, and the Kobayashi–Royden metric. We sketch the proofs of certain principal results and discuss some recent achievements. Several open problems are also stated.
Keywords: holomorphic mapping.
@article{TRSPY_2017_298_a14,
     author = {S. Pinchuk and R. Shafikov and A. Sukhov},
     title = {Some {Aspects} of {Holomorphic} {Mappings:} {A} {Survey}},
     journal = {Informatics and Automation},
     pages = {227--266},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a14/}
}
TY  - JOUR
AU  - S. Pinchuk
AU  - R. Shafikov
AU  - A. Sukhov
TI  - Some Aspects of Holomorphic Mappings: A Survey
JO  - Informatics and Automation
PY  - 2017
SP  - 227
EP  - 266
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a14/
LA  - ru
ID  - TRSPY_2017_298_a14
ER  - 
%0 Journal Article
%A S. Pinchuk
%A R. Shafikov
%A A. Sukhov
%T Some Aspects of Holomorphic Mappings: A Survey
%J Informatics and Automation
%D 2017
%P 227-266
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a14/
%G ru
%F TRSPY_2017_298_a14
S. Pinchuk; R. Shafikov; A. Sukhov. Some Aspects of Holomorphic Mappings: A Survey. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 227-266. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a14/