Inverse Results on Row Sequences of Hermite--Pad\'e Approximation
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 165-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider row sequences of (type II) Hermite–Padé approximations with common denominator associated with a vector $\mathbf f$ of formal power expansions about the origin. In terms of the asymptotic behavior of the sequence of common denominators, we describe some analytic properties of $\mathbf f$ and restate some conjectures corresponding to questions once posed by A. A. Gonchar for row sequences of Padé approximants.
Keywords: Hermite–Padé approximation, inverse type results.
@article{TRSPY_2017_298_a11,
     author = {G. L\'opez Lagomasino and Y. Zaldivar Gerpe},
     title = {Inverse {Results} on {Row} {Sequences} of {Hermite--Pad\'e} {Approximation}},
     journal = {Informatics and Automation},
     pages = {165--184},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a11/}
}
TY  - JOUR
AU  - G. López Lagomasino
AU  - Y. Zaldivar Gerpe
TI  - Inverse Results on Row Sequences of Hermite--Pad\'e Approximation
JO  - Informatics and Automation
PY  - 2017
SP  - 165
EP  - 184
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a11/
LA  - ru
ID  - TRSPY_2017_298_a11
ER  - 
%0 Journal Article
%A G. López Lagomasino
%A Y. Zaldivar Gerpe
%T Inverse Results on Row Sequences of Hermite--Pad\'e Approximation
%J Informatics and Automation
%D 2017
%P 165-184
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a11/
%G ru
%F TRSPY_2017_298_a11
G. López Lagomasino; Y. Zaldivar Gerpe. Inverse Results on Row Sequences of Hermite--Pad\'e Approximation. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 165-184. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a11/

[1] Agmon S., “Sur les séries de Dirichlet”, Ann. sci. Éc. norm. supér. Sér. 3, 66 (1949), 263–310 | MR | Zbl

[2] Bieberbach L., Analytische Fortsetzung, Springer, Berlin, 1955 | MR | MR | Zbl

[3] Cacoq J., de la Calle Ysern B., López Lagomasino G., “Incomplete Padé approximation and convergence of row sequences of Hermite–Padé approximants”, J. Approx. Theory, 170 (2013), 59–77 | DOI | MR | Zbl

[4] Cacoq J., de la Calle Ysern B., López Lagomasino G., “Direct and inverse results on row sequences of Hermite–Padé approximants”, Constr. Approx., 38:1 (2013), 133–160 | DOI | MR | Zbl

[5] Fabry E., “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. sci. Éc. norm. supér. Sér. 3, 13 (1896), 367–399 | MR | Zbl

[6] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Mat. sb., 97:4 (1975), 607–629 | MR

[7] Gonchar A. A., “O skhodimosti obobschennykh approksimatsii Pade meromorfnykh funktsii”, Mat. sb., 98:4 (1975), 564–577 | MR | Zbl

[8] Gonchar A. A., “Polyusy strok tablitsy Pade i meromorfnoe prodolzhenie funktsii”, Mat. sb., 115:4 (1981), 590–613 | MR | Zbl

[9] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matematiki, 1 (2003), 83–106 | DOI | Zbl

[10] Graves-Morris P. R., Saff E. B., “A de Montessus theorem for vector valued rational interpolants”, Rational approximation and interpolation, Proc. Conf. (Tampa, FL, 1983), Lect. Notes Math., 1105, Springer, Berlin, 1984, 227–242 | DOI | MR

[11] Hadamard J., “Essai sur l'étude des fonctions données par leur développement de Taylor”, J. math. pures appl. Sér. 4, 8 (1892), 101–186

[12] Mandelbrojt S., Dirichlet series: Principles and methods, D. Reidel, Dordrecht, 1972 | MR | Zbl

[13] de Montessus de Ballore R., “Sur les fractions continues algébriques”, Bull. Soc. math. France., 30 (1902), 28–36 | DOI | MR | Zbl

[14] Suetin S. P., “O polyusakh $m$-i stroki tablitsy Pade”, Mat. sb., 120:4 (1983), 500–504 | MR | Zbl

[15] Suetin S. P., “Ob odnoi obratnoi zadache dlya $m$-i stroki tablitsy Pade”, Mat. sb., 124:2 (1984), 238–250 | MR | Zbl