On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 201-210

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a closed smooth orientable manifold $M^n$, $n\geq3$, admits a Morse–Smale system without heteroclinic intersections (the absence of periodic trajectories is additionally required in the case of a Morse–Smale flow), then this manifold is homeomorphic to the connected sum of manifolds whose structure is interconnected with the type and number of points that belong to the non-wandering set of the Morse–Smale system.
@article{TRSPY_2017_297_a9,
     author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev},
     title = {On the structure of the ambient manifold for {Morse--Smale} systems without heteroclinic intersections},
     journal = {Informatics and Automation},
     pages = {201--210},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a9/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
JO  - Informatics and Automation
PY  - 2017
SP  - 201
EP  - 210
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a9/
LA  - ru
ID  - TRSPY_2017_297_a9
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections
%J Informatics and Automation
%D 2017
%P 201-210
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a9/
%G ru
%F TRSPY_2017_297_a9
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev. On the structure of the ambient manifold for Morse--Smale systems without heteroclinic intersections. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 201-210. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a9/