Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_297_a7, author = {Rostislav Grigorchuk and Daniel Lenz and Tatiana Nagnibeda}, title = {Combinatorics of the subshift associated with {Grigorchuk's} group}, journal = {Informatics and Automation}, pages = {158--164}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a7/} }
TY - JOUR AU - Rostislav Grigorchuk AU - Daniel Lenz AU - Tatiana Nagnibeda TI - Combinatorics of the subshift associated with Grigorchuk's group JO - Informatics and Automation PY - 2017 SP - 158 EP - 164 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a7/ LA - ru ID - TRSPY_2017_297_a7 ER -
Rostislav Grigorchuk; Daniel Lenz; Tatiana Nagnibeda. Combinatorics of the subshift associated with Grigorchuk's group. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 158-164. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a7/
[1] Baake M., Grimm U., Aperiodic order, v. 1, Encycl. Math. Appl., 149, A mathematical invitation, Cambridge Univ. Press, Cambridge, 2014 | MR
[2] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl
[3] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR | Zbl
[4] Grigorchuk R., Lenz D., Nagnibeda T., Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, E-print, 2014, arXiv: 1412.6822[math.GR]
[5] Grigorchuk R., Lenz D., Nagnibeda T., “Schreier graphs of Grigorchuk's group and a subshift associated to a non-primitive substitution”, Groups, graphs and random walks, LMS Lect. Note Ser., 436, eds. T. Ceccherini-Silberstein, M. Salvatori, E. Sava-Huss, Cambridge Univ. Press, Cambridge, 2017 | MR
[6] Lysënok I. G., “Sistema opredelyayuschikh sootnoshenii dlya gruppy Grigorchuka”, Mat. zametki, 38:4 (1985), 503–516 | MR | Zbl
[7] J. Kellendonk, D. Lenz, J. Savinien (eds.), Mathematics of aperiodic order, Prog. Math., 309, Birkhäuser, Basel, 2015 | DOI | MR | Zbl
[8] Matte Bon N., “Topological full groups of minimal subshifts with subgroups of intermediate growth”, J. Mod. Dyn., 9 (2015), 67–80 | DOI | MR | Zbl
[9] Nekrashevych V., Palindromic subshifts and simple periodic groups of intermediate growth, E-print, 2016, arXiv: 1601.01033[math.GR]
[10] Walters P., An introduction to ergodic theory, Grad. Texts Math., 79, Springer, New York, 1982 | DOI | MR | Zbl