On the Riemann--Hilbert problem for difference and $q$-difference systems
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 326-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an analog of the classical Riemann–Hilbert problem stated for the classes of difference and $q$-difference systems. We generalize Birkhoff's existence theorem.
@article{TRSPY_2017_297_a17,
     author = {I. V. Vyugin and R. I. Levin},
     title = {On the {Riemann--Hilbert} problem for difference and $q$-difference systems},
     journal = {Informatics and Automation},
     pages = {326--343},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a17/}
}
TY  - JOUR
AU  - I. V. Vyugin
AU  - R. I. Levin
TI  - On the Riemann--Hilbert problem for difference and $q$-difference systems
JO  - Informatics and Automation
PY  - 2017
SP  - 326
EP  - 343
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a17/
LA  - ru
ID  - TRSPY_2017_297_a17
ER  - 
%0 Journal Article
%A I. V. Vyugin
%A R. I. Levin
%T On the Riemann--Hilbert problem for difference and $q$-difference systems
%J Informatics and Automation
%D 2017
%P 326-343
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a17/
%G ru
%F TRSPY_2017_297_a17
I. V. Vyugin; R. I. Levin. On the Riemann--Hilbert problem for difference and $q$-difference systems. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 326-343. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a17/

[1] Anosov D. V., Bolibruch A. A., The Riemann–Hilbert problem: A publication from the Steklov Institute of Mathematics, Aspects Math., E22, Vieweg, Braunschweig, 1994 | DOI | MR | Zbl

[2] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12:2 (1911), 243–284 | DOI | MR | Zbl

[3] Birkhoff G. D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts Sci., 49:9 (1913), 521–568 | DOI | Zbl