On the commutator group of the group of interval exchange transformations
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 313-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the group of interval exchange transformations and obtain several characterizations of its commutator group. In particular, it turns out that the commutator group is generated by elements of order $2$.
@article{TRSPY_2017_297_a16,
     author = {Yaroslav Vorobets},
     title = {On the commutator group of the group of interval exchange transformations},
     journal = {Informatics and Automation},
     pages = {313--325},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/}
}
TY  - JOUR
AU  - Yaroslav Vorobets
TI  - On the commutator group of the group of interval exchange transformations
JO  - Informatics and Automation
PY  - 2017
SP  - 313
EP  - 325
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/
LA  - ru
ID  - TRSPY_2017_297_a16
ER  - 
%0 Journal Article
%A Yaroslav Vorobets
%T On the commutator group of the group of interval exchange transformations
%J Informatics and Automation
%D 2017
%P 313-325
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/
%G ru
%F TRSPY_2017_297_a16
Yaroslav Vorobets. On the commutator group of the group of interval exchange transformations. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 313-325. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/

[1] Arnoux P., “Échanges d'intervalles et flots sur les surfaces”, Théorie ergodique, Semin. Les Plans-sur-Bex 1980, Monogr. Enseign. Math., 29, Univ. Genève, Genève, 1981, 5–38 | MR

[2] Boshernitzan M., “Subgroup of interval exchanges generated by torsion elements and rotations”, Proc. Amer. Math. Soc., 144:6 (2016), 2565–2573 | DOI | MR | Zbl

[3] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl

[4] Keane M., “Interval exchange transformations”, Math. Z., 141 (1975), 25–31 | DOI | MR | Zbl

[5] Sah Chih-Han, Scissors congruences of the interval, Preprint, State Univ. New York, Stony Brook, NY, 1981 | MR | Zbl

[6] Veech W. A., “The metric theory of interval exchange transformations. III: The Sah–Arnoux–Fathi invariant”, Amer. J. Math., 106:6 (1984), 1389–1422 | DOI | MR | Zbl

[7] Viana M., “Ergodic theory of interval exchange maps”, Rev. Mat. Complut., 19:1 (2006), 7–100 | DOI | MR | Zbl