On the commutator group of the group of interval exchange transformations
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 313-325 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the group of interval exchange transformations and obtain several characterizations of its commutator group. In particular, it turns out that the commutator group is generated by elements of order $2$.
@article{TRSPY_2017_297_a16,
     author = {Yaroslav Vorobets},
     title = {On the commutator group of the group of interval exchange transformations},
     journal = {Informatics and Automation},
     pages = {313--325},
     year = {2017},
     volume = {297},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/}
}
TY  - JOUR
AU  - Yaroslav Vorobets
TI  - On the commutator group of the group of interval exchange transformations
JO  - Informatics and Automation
PY  - 2017
SP  - 313
EP  - 325
VL  - 297
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/
LA  - ru
ID  - TRSPY_2017_297_a16
ER  - 
%0 Journal Article
%A Yaroslav Vorobets
%T On the commutator group of the group of interval exchange transformations
%J Informatics and Automation
%D 2017
%P 313-325
%V 297
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/
%G ru
%F TRSPY_2017_297_a16
Yaroslav Vorobets. On the commutator group of the group of interval exchange transformations. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 313-325. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a16/

[1] Arnoux P., “Échanges d'intervalles et flots sur les surfaces”, Théorie ergodique, Semin. Les Plans-sur-Bex 1980, Monogr. Enseign. Math., 29, Univ. Genève, Genève, 1981, 5–38 | MR

[2] Boshernitzan M., “Subgroup of interval exchanges generated by torsion elements and rotations”, Proc. Amer. Math. Soc., 144:6 (2016), 2565–2573 | DOI | MR | Zbl

[3] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl

[4] Keane M., “Interval exchange transformations”, Math. Z., 141 (1975), 25–31 | DOI | MR | Zbl

[5] Sah Chih-Han, Scissors congruences of the interval, Preprint, State Univ. New York, Stony Brook, NY, 1981 | MR | Zbl

[6] Veech W. A., “The metric theory of interval exchange transformations. III: The Sah–Arnoux–Fathi invariant”, Amer. J. Math., 106:6 (1984), 1389–1422 | DOI | MR | Zbl

[7] Viana M., “Ergodic theory of interval exchange maps”, Rev. Mat. Complut., 19:1 (2006), 7–100 | DOI | MR | Zbl