A note on the shrinking sector problem for surfaces of variable negative curvature
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 281-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given the universal cover $\widetilde V$ for a compact surface $V$ of variable negative curvature and a point $\widetilde x_0\in\widetilde V$, we consider the set of directions $\widetilde v\in S_{\widetilde x_0}\widetilde V$ for which a narrow sector in the direction $\widetilde v$, and chosen to have unit area, contains exactly $k$ points from the orbit of the covering group. We can consider the size of the set of such $\widetilde v$ in terms of the induced measure on $S_{\widetilde x_0}\widetilde V$ by any Gibbs measure for the geodesic flow. We show that for each $k$ the size of such sets converges as the sector grows narrower and describe these limiting values. The proof involves recasting a similar result by Marklof and Vinogradov, for the particular case of surfaces of constant curvature and the volume measure, by using the strong mixing property for the geodesic flow, relative to the Gibbs measure.
@article{TRSPY_2017_297_a14,
     author = {Mark Pollicott},
     title = {A note on the shrinking sector problem for surfaces of variable negative curvature},
     journal = {Informatics and Automation},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a14/}
}
TY  - JOUR
AU  - Mark Pollicott
TI  - A note on the shrinking sector problem for surfaces of variable negative curvature
JO  - Informatics and Automation
PY  - 2017
SP  - 281
EP  - 291
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a14/
LA  - ru
ID  - TRSPY_2017_297_a14
ER  - 
%0 Journal Article
%A Mark Pollicott
%T A note on the shrinking sector problem for surfaces of variable negative curvature
%J Informatics and Automation
%D 2017
%P 281-291
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a14/
%G ru
%F TRSPY_2017_297_a14
Mark Pollicott. A note on the shrinking sector problem for surfaces of variable negative curvature. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 281-291. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a14/

[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl

[2] Babillot M., “On the mixing property for hyperbolic systems”, Isr. J. Math., 129 (2002), 61–76 | DOI | MR | Zbl

[3] Bowen R., Ruelle D., “The ergodic theory of Axiom A flows”, Invent. math., 29:3 (1975), 181–202 | DOI | MR | Zbl

[4] Haydn N. T. A., Ruelle D., “Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification”, Commun. Math. Phys., 148:1 (1992), 155–167 | DOI | MR | Zbl

[5] Hirsch M. W., Pugh C. C., “Stable manifolds and hyperbolic sets”, Global analysis, Proc. Symp. Pure Math. (Berkeley, CA, 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 133–163 | DOI | MR

[6] Huber H., “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138 (1959), 1–26 | DOI | MR | Zbl

[7] Margulis G. A., “O nekotorykh primeneniyakh ergodicheskoi teorii k izucheniyu mnogoobrazii otritsatelnoi krivizny”, Funkts. analiz i ego pril., 3:4 (1969), 89–90 | MR | Zbl

[8] Marklof J., Vinogradov I., “Directions in hyperbolic lattices”, J. reine angew. Math., 2015 | DOI

[9] Nicholls P., “A lattice point problem in hyperbolic space”, Mich. Math. J., 30:3 (1983), 273–287 | DOI | MR | Zbl

[10] Sharp R., “Sector estimates for Kleinian groups”, Port. Math. (N.S.), 58:4 (2001), 461–471 | MR | Zbl