Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_297_a14, author = {Mark Pollicott}, title = {A note on the shrinking sector problem for surfaces of variable negative curvature}, journal = {Informatics and Automation}, pages = {281--291}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a14/} }
Mark Pollicott. A note on the shrinking sector problem for surfaces of variable negative curvature. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 281-291. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a14/
[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl
[2] Babillot M., “On the mixing property for hyperbolic systems”, Isr. J. Math., 129 (2002), 61–76 | DOI | MR | Zbl
[3] Bowen R., Ruelle D., “The ergodic theory of Axiom A flows”, Invent. math., 29:3 (1975), 181–202 | DOI | MR | Zbl
[4] Haydn N. T. A., Ruelle D., “Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification”, Commun. Math. Phys., 148:1 (1992), 155–167 | DOI | MR | Zbl
[5] Hirsch M. W., Pugh C. C., “Stable manifolds and hyperbolic sets”, Global analysis, Proc. Symp. Pure Math. (Berkeley, CA, 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 133–163 | DOI | MR
[6] Huber H., “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138 (1959), 1–26 | DOI | MR | Zbl
[7] Margulis G. A., “O nekotorykh primeneniyakh ergodicheskoi teorii k izucheniyu mnogoobrazii otritsatelnoi krivizny”, Funkts. analiz i ego pril., 3:4 (1969), 89–90 | MR | Zbl
[8] Marklof J., Vinogradov I., “Directions in hyperbolic lattices”, J. reine angew. Math., 2015 | DOI
[9] Nicholls P., “A lattice point problem in hyperbolic space”, Mich. Math. J., 30:3 (1983), 273–287 | DOI | MR | Zbl
[10] Sharp R., “Sector estimates for Kleinian groups”, Port. Math. (N.S.), 58:4 (2001), 461–471 | MR | Zbl