On the smoothness of the conjugacy between circle maps with a~break
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 224-231

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $\alpha\in(0,1)$, $c\in\mathbb R_+\setminus\{1\}$ and $\gamma>0$ and for Lebesgue almost all irrational $\rho\in(0,1)$, any two $C^{2+\alpha}$-smooth circle diffeomorphisms with a break, with the same rotation number $\rho$ and the same size of the breaks $c$, are conjugate to each other via a $C^1$-smooth conjugacy whose derivative is uniformly continuous with modulus of continuity $\omega(x)=A|{\log x}|^{-\gamma}$ for some $A>0$.
@article{TRSPY_2017_297_a11,
     author = {Konstantin Khanin and Sa\v{s}a Koci\'c},
     title = {On the smoothness of the conjugacy between circle maps with a~break},
     journal = {Informatics and Automation},
     pages = {224--231},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a11/}
}
TY  - JOUR
AU  - Konstantin Khanin
AU  - Saša Kocić
TI  - On the smoothness of the conjugacy between circle maps with a~break
JO  - Informatics and Automation
PY  - 2017
SP  - 224
EP  - 231
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a11/
LA  - ru
ID  - TRSPY_2017_297_a11
ER  - 
%0 Journal Article
%A Konstantin Khanin
%A Saša Kocić
%T On the smoothness of the conjugacy between circle maps with a~break
%J Informatics and Automation
%D 2017
%P 224-231
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a11/
%G ru
%F TRSPY_2017_297_a11
Konstantin Khanin; Saša Kocić. On the smoothness of the conjugacy between circle maps with a~break. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 224-231. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a11/