Sums of multiplicative characters with additive convolutions
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 265-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain new estimates for binary and ternary sums of multiplicative characters with additive convolutions of characteristic functions of sets with small additive doubling. In particular, we improve a result of Mei-Chu Chang. The proof uses the Croot–Sisask almost periodicity lemma.
@article{TRSPY_2017_296_a20,
     author = {A. S. Volostnov and I. D. Shkredov},
     title = {Sums of multiplicative characters with additive convolutions},
     journal = {Informatics and Automation},
     pages = {265--279},
     year = {2017},
     volume = {296},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a20/}
}
TY  - JOUR
AU  - A. S. Volostnov
AU  - I. D. Shkredov
TI  - Sums of multiplicative characters with additive convolutions
JO  - Informatics and Automation
PY  - 2017
SP  - 265
EP  - 279
VL  - 296
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a20/
LA  - ru
ID  - TRSPY_2017_296_a20
ER  - 
%0 Journal Article
%A A. S. Volostnov
%A I. D. Shkredov
%T Sums of multiplicative characters with additive convolutions
%J Informatics and Automation
%D 2017
%P 265-279
%V 296
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a20/
%G ru
%F TRSPY_2017_296_a20
A. S. Volostnov; I. D. Shkredov. Sums of multiplicative characters with additive convolutions. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 265-279. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a20/

[1] Aksoy Yazici E., Murphy B., Rudnev M., Shkredov I., Growth estimates in positive characteristic via collisions, E-print, 2015, arXiv: 1512.06613[math.CO]

[2] Chang M.-C., “On a question of Davenport and Lewis and new character sum bounds in finite fields”, Duke Math. J., 145:3 (2008), 409–442 | DOI | MR | Zbl

[3] Croot E., Sisask O., “A probabilistic technique for finding almost-periods of convolutions”, Geom. Funct. Anal., 20:6 (2010), 1367–1396 | DOI | MR | Zbl

[4] Davenport H., Erdős P., “The distribution of quadratic and higher residues”, Publ. Math. Debrecen, 2 (1952), 252–265 | MR

[5] Friedlander J., Iwaniec H., “Estimates for character sums”, Proc. Amer. Math. Soc., 119:2 (1993), 365–372 | DOI | MR | Zbl

[6] Hanson B., Estimates for characters sums with various convolutions, E-print, 2015, arXiv: 1509.04354v1[math.NT]

[7] Iwaniec H., Kowalski E., Analytic number theory, AMS Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[8] Karatsuba A. A., “Raspredelenie stepennykh vychetov i nevychetov v additivnykh posledovatelnostyakh”, DAN SSSR, 196:4 (1971), 759–760 | Zbl

[9] Karatsuba A. A., “Summy simvolov Lezhandra ot mnogochlenov vtoroi stepeni s prostymi chislami”, Izv. AN SSSR. Ser. mat., 42:2 (1978), 315–324 | MR | Zbl

[10] Karatsuba A. A., “Raspredelenie znachenii kharakterov Dirikhle na additivnykh posledovatelnostyakh”, DAN SSSR, 319:3 (1991), 543–544 | MR

[11] Karatsuba A. A., “Summy kharakterov s vesami”, Izv. RAN. Ser. mat., 64:2 (2000), 29–42 | DOI | MR | Zbl

[12] Karatsuba A. A., “Arifmeticheskie problemy teorii kharakterov Dirikhle”, UMN, 63:4 (2008), 43–92 | DOI | MR | Zbl

[13] Sanders T., “The structure theory of set addition revisited”, Bull. Amer. Math. Soc., 50:1 (2013), 93–127 | DOI | MR | Zbl

[14] Shkredov I. D., “Sumsets in quadratic residues”, Acta arith., 164:3 (2014), 221–243 | DOI | MR | Zbl

[15] Stepanov S. A., Arifmetika algebraicheskikh krivykh, Nauka, M., 1991 | MR

[16] Tao T., Vu V. H., Additive combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl