Generalized Kloosterman sum with primes
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 163-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to generalized Kloosterman sums modulo a prime, i.e., trigonometric sums of the form $\sum _{p\le x}\exp \{2\pi i (a\overline {p}\,{+}\,F_k(p))/q\}$ and $\sum _{n\le x}\mu (n)\exp \{2\pi i (a\overline {n}\,{+}\,F_k(n))/q\}$, where $q$ is a prime number, $(a,q)=1$, $m\overline {m}\equiv 1\pmod q$, $F_k(u)$ is a polynomial of degree $k\ge 2$ with integer coefficients, and $p$ runs over prime numbers. An upper estimate with a power saving is obtained for the absolute values of such sums for $x\ge q^{1/2+\varepsilon }$.
@article{TRSPY_2017_296_a12,
     author = {M. A. Korolev},
     title = {Generalized {Kloosterman} sum with primes},
     journal = {Informatics and Automation},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a12/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Generalized Kloosterman sum with primes
JO  - Informatics and Automation
PY  - 2017
SP  - 163
EP  - 180
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a12/
LA  - ru
ID  - TRSPY_2017_296_a12
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Generalized Kloosterman sum with primes
%J Informatics and Automation
%D 2017
%P 163-180
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a12/
%G ru
%F TRSPY_2017_296_a12
M. A. Korolev. Generalized Kloosterman sum with primes. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 163-180. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a12/

[1] Ayyad A., Cochrane T., Zheng Z., “The congruence $x_1x_2\equiv x_3x_4\pmod p$, the equation $x_1x_2=x_3x_4$, and mean values of character sums”, J. Number Theory, 59:2 (1996), 398–413 | DOI | MR | Zbl

[2] Baker R. C., “Kloosterman sums with prime variable”, Acta arith., 156:4 (2012), 351–372 | DOI | MR | Zbl

[3] Bourgain J., “More on the sum–product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[4] Burgein Zh., Garaev M. Z., “Summa mnozhestv, obrazovannykh obratnymi elementami v polyakh prostogo poryadka, i polilineinye summy Kloostermana”, Izv. RAN. Ser. mat., 78:4 (2014), 19–72 | DOI | MR | Zbl

[5] Bourgain J., Garaev M. Z., “Kloosterman sums in residue rings”, Acta arith., 164:1 (2014), 43–64 | DOI | MR | Zbl

[6] Chalk J. H. H., Smith R. A., “On Bombieri's estimate for exponential sums”, Acta arith., 18 (1971), 191–212 | MR | Zbl

[7] Fouvry É., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. sci. Éc. Norm. Supér. Sér. 4, 31:1 (1998), 93–130 | MR | Zbl

[8] Fouvry É., Shparlinsky I. E., “On a ternary quadratic form over primes”, Acta arith., 150:3 (2011), 285–314 | DOI | MR | Zbl

[9] Friedlander J. H., Iwaniec H., “Incomplete Kloosterman sums and a divisor problem”, Ann. Math. Ser. 2, 121 (1985), 319–350 | DOI | MR | Zbl

[10] Garaev M. Z., “Otsenka summ Kloostermana s prostymi chislami i primenenie”, Mat. zametki, 88:3 (2010), 365–373 | DOI | MR

[11] Karatsuba A. A., “Raspredelenie obratnykh velichin v koltse vychetov po zadannomu modulyu”, DAN, 333:2 (1993), 138–139 | MR | Zbl

[12] Karatsuba A. A., “Drobnye doli spetsialnogo vida funktsii”, Izv. RAN. Ser. mat., 59:4 (1995), 61–80 | MR | Zbl

[13] Karatsuba A. A., “Analogi summ Kloostermana”, Izv. RAN. Ser. mat., 59:5 (1995), 93–102 | MR | Zbl

[14] Karatsuba A. A., “Analogi nepolnykh summ Kloostermana i ikh prilozheniya”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl

[15] Karatsuba A. A., “Dvoinye summy Kloostermana”, Mat. zametki, 66:5 (1999), 682–687 | DOI | MR | Zbl

[16] Shiu P., “A Brun–Titchmarsh theorem for multiplicative functions”, J. reine angew. Math., 313 (1980), 161–170 | MR | Zbl

[17] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. lit., M., 1953 | MR

[18] Vinogradov I. M., “Ob odnoi trigonometricheskoi summe i ee prilozheniyakh v teorii chisel”, DAN SSSR, 1933, no. 5, 195–204 | Zbl

[19] Vinogradov I. M., “O nekotorykh trigonometricheskikh summakh i ikh prilozheniyakh”, DAN SSSR, 1933, no. 6, 249–255 | Zbl

[20] Vinogradov I. M., “Novye prilozheniya trigonometricheskikh summ”, DAN SSSR, 1:1 (1934), 10–14 | MR | Zbl

[21] Vinogradov I. M., “Trigonometricheskie summy, zavisyaschie ot sostavnogo modulya”, DAN SSSR, 1:5 (1934), 225–229 | Zbl

[22] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR