@article{TRSPY_2017_296_a1,
author = {V. Blomer and \'E. Fouvry and E. Kowalski and Ph. Michel and Dj. Mili\'cevi\'c},
title = {Some applications of smooth bilinear forms with {Kloosterman} sums},
journal = {Informatics and Automation},
pages = {24--35},
year = {2017},
volume = {296},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/}
}
TY - JOUR AU - V. Blomer AU - É. Fouvry AU - E. Kowalski AU - Ph. Michel AU - Dj. Milićević TI - Some applications of smooth bilinear forms with Kloosterman sums JO - Informatics and Automation PY - 2017 SP - 24 EP - 35 VL - 296 UR - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/ LA - ru ID - TRSPY_2017_296_a1 ER -
V. Blomer; É. Fouvry; E. Kowalski; Ph. Michel; Dj. Milićević. Some applications of smooth bilinear forms with Kloosterman sums. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 24-35. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/
[1] Blomer V., Fouvry É., Kowalski E., Michel Ph., Milićević Dj., “On moments of twisted $L$-functions”, Amer. J. Math. (to appear)
[2] Fouvry É., Kowalski E., Michel Ph., “Algebraic trace functions over the primes”, Duke Math. J., 163:9 (2014), 1683–1736 | DOI | MR | Zbl
[3] Fouvry É., Kowalski E., Michel Ph., “Algebraic twists of modular forms and Hecke orbits”, Geom. Funct. Anal., 25:2 (2015), 580–657 | DOI | MR | Zbl
[4] Fouvry É., Kowalski E., Michel Ph., “On the exponent of distribution of the ternary divisor function”, Mathematika, 61:1 (2015), 121–144 | DOI | MR | Zbl
[5] Heath-Brown D. R., “Prime numbers in short intervals and a generalized Vaughan identity”, Can. J. Math., 34 (1982), 1365–1377 | DOI | MR | Zbl
[6] Kowalski E., Michel Ph., VanderKam J., “Rankin–Selberg $L$-functions in the level aspect”, Duke Math. J., 114:1 (2002), 123–191 | DOI | MR | Zbl
[7] Shparlinski I. E., Zhang T., “Cancellations amongst Kloosterman sums”, Acta arith., 176:3 (2016), 201–210 ; arXiv: 1601.05123[math.NT] | DOI | MR | Zbl
[8] Young M. P., “The fourth moment of Dirichlet $L$-functions”, Ann. Math. Ser. 2, 173:1 (2011), 1–50 | DOI | MR | Zbl