Some applications of smooth bilinear forms with Kloosterman sums
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 24-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We revisit a recent bound of I. Shparlinski and T. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier results on sums of Kloosterman sums along the primes and on the error term of the fourth moment of Dirichlet $L$-functions.
@article{TRSPY_2017_296_a1,
     author = {V. Blomer and \'E. Fouvry and E. Kowalski and Ph. Michel and Dj. Mili\'cevi\'c},
     title = {Some applications of smooth bilinear forms with {Kloosterman} sums},
     journal = {Informatics and Automation},
     pages = {24--35},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/}
}
TY  - JOUR
AU  - V. Blomer
AU  - É. Fouvry
AU  - E. Kowalski
AU  - Ph. Michel
AU  - Dj. Milićević
TI  - Some applications of smooth bilinear forms with Kloosterman sums
JO  - Informatics and Automation
PY  - 2017
SP  - 24
EP  - 35
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/
LA  - ru
ID  - TRSPY_2017_296_a1
ER  - 
%0 Journal Article
%A V. Blomer
%A É. Fouvry
%A E. Kowalski
%A Ph. Michel
%A Dj. Milićević
%T Some applications of smooth bilinear forms with Kloosterman sums
%J Informatics and Automation
%D 2017
%P 24-35
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/
%G ru
%F TRSPY_2017_296_a1
V. Blomer; É. Fouvry; E. Kowalski; Ph. Michel; Dj. Milićević. Some applications of smooth bilinear forms with Kloosterman sums. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 24-35. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a1/