Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 163-173

Voir la notice de l'article provenant de la source Math-Net.Ru

The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
@article{TRSPY_2016_295_a7,
     author = {A. T. Il'ichev and A. P. Chugainova},
     title = {Spectral stability theory of heteroclinic solutions to the {Korteweg--de} {Vries--Burgers} equation with an arbitrary potential},
     journal = {Informatics and Automation},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - A. P. Chugainova
TI  - Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
JO  - Informatics and Automation
PY  - 2016
SP  - 163
EP  - 173
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/
LA  - ru
ID  - TRSPY_2016_295_a7
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A A. P. Chugainova
%T Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
%J Informatics and Automation
%D 2016
%P 163-173
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/
%G ru
%F TRSPY_2016_295_a7
A. T. Il'ichev; A. P. Chugainova. Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential. Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 163-173. http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/