Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_295_a7, author = {A. T. Il'ichev and A. P. Chugainova}, title = {Spectral stability theory of heteroclinic solutions to the {Korteweg--de} {Vries--Burgers} equation with an arbitrary potential}, journal = {Informatics and Automation}, pages = {163--173}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/} }
TY - JOUR AU - A. T. Il'ichev AU - A. P. Chugainova TI - Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential JO - Informatics and Automation PY - 2016 SP - 163 EP - 173 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/ LA - ru ID - TRSPY_2016_295_a7 ER -
%0 Journal Article %A A. T. Il'ichev %A A. P. Chugainova %T Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential %J Informatics and Automation %D 2016 %P 163-173 %V 295 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/ %G ru %F TRSPY_2016_295_a7
A. T. Il'ichev; A. P. Chugainova. Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential. Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 163-173. http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a7/