On first integrals of geodesic flows on a~two-torus
Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 241-260

Voir la notice de l'article provenant de la source Math-Net.Ru

For a geodesic (or magnetic geodesic) flow, the problem of the existence of an additional (independent of the energy) first integral that is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.
@article{TRSPY_2016_295_a14,
     author = {I. A. Taimanov},
     title = {On first integrals of geodesic flows on a~two-torus},
     journal = {Informatics and Automation},
     pages = {241--260},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a14/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On first integrals of geodesic flows on a~two-torus
JO  - Informatics and Automation
PY  - 2016
SP  - 241
EP  - 260
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a14/
LA  - ru
ID  - TRSPY_2016_295_a14
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On first integrals of geodesic flows on a~two-torus
%J Informatics and Automation
%D 2016
%P 241-260
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a14/
%G ru
%F TRSPY_2016_295_a14
I. A. Taimanov. On first integrals of geodesic flows on a~two-torus. Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 241-260. http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a14/