$\mathbb Q$-Fano threefolds of index~$7$
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 152-166

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if the inequality $\dim\mathopen|-K_X|\ge15$ holds for a $\mathbb Q$-Fano threefold $X$ of Fano index $7$, then $X$ is isomorphic to one of the following varieties: $\mathbb P(1^2,2,3)$, $X_6\subset\mathbb P(1,2^2,3,5)$, or $X_6\subset\mathbb P(1,2,3^2,4)$.
@article{TRSPY_2016_294_a8,
     author = {Yuri G. Prokhorov},
     title = {$\mathbb Q${-Fano} threefolds of index~$7$},
     journal = {Informatics and Automation},
     pages = {152--166},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a8/}
}
TY  - JOUR
AU  - Yuri G. Prokhorov
TI  - $\mathbb Q$-Fano threefolds of index~$7$
JO  - Informatics and Automation
PY  - 2016
SP  - 152
EP  - 166
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a8/
LA  - ru
ID  - TRSPY_2016_294_a8
ER  - 
%0 Journal Article
%A Yuri G. Prokhorov
%T $\mathbb Q$-Fano threefolds of index~$7$
%J Informatics and Automation
%D 2016
%P 152-166
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a8/
%G ru
%F TRSPY_2016_294_a8
Yuri G. Prokhorov. $\mathbb Q$-Fano threefolds of index~$7$. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 152-166. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a8/