Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_294_a4, author = {S. V. Konyagin and I. D. Shkredov}, title = {New results on sums and products in~$\mathbb R$}, journal = {Informatics and Automation}, pages = {87--98}, publisher = {mathdoc}, volume = {294}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a4/} }
S. V. Konyagin; I. D. Shkredov. New results on sums and products in~$\mathbb R$. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 87-98. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a4/
[1] Balog A., Wooley T. D., A low-energy decomposition theorem, E-print, 2015, arXiv: 1510.03309v1[math.NT]
[2] Erdős P., Szemerédi E., “On sums and products of integers”, Studies in pure mathematics, To the memory of Paul Turán, Birkhäuser, Basel, 1983, 213–218 | MR
[3] Katz N. H., Koester P., “On additive doubling and energy”, SIAM J. Discrete Math., 24 (2010), 1684–1693 | DOI | MR | Zbl
[4] Konyagin S. V., Shkredov I. D., “O summakh mnozhestv, imeyuschikh maloe proizvedenie”, Tr. MIAN, 290, 2015, 304–316 | DOI | MR | Zbl
[5] Raz O. E., Roche-Newton O., Sharir M., “Sets with few distinct distances do not have heavy lines”, Discrete Math., 338:8 (2015), 1484–1492 ; arXiv: 1410.1654v1[math.CO] | DOI | MR | Zbl
[6] Schoen T., Shkredov I. D., “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl
[7] Shkredov I. D., “Some new inequalities in additive combinatorics”, Moscow J. Comb. Number Theory, 3 (2013), 189–239 | MR | Zbl
[8] Shkredov I. D., “O summakh mnozhestv Semeredi–Trottera”, Tr. MIAN, 289, 2015, 318–327 | DOI | MR | Zbl
[9] Solymosi J., “Bounding multiplicative energy by the sumset”, Adv. Math., 222:2 (2009), 402–408 | DOI | MR | Zbl
[10] Szemerédi E., Trotter W. T. (Jr.), “Extremal problems in discrete geometry”, Combinatorica, 3 (1983), 381–392 | DOI | MR | Zbl
[11] Tao T., Vu V. H., Additive combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl