Correction to the paper “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface” (Proc. Steklov Inst. Math. 290, 178–188 (2015))
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 325-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TRSPY_2016_294_a20,
     author = {O. K. Sheinman},
     title = {Correction to the paper {{\textquotedblleft}Semisimple} {Lie} algebras and {Hamiltonian} theory of finite-dimensional {Lax} equations with spectral parameter on {a~Riemann} surface{\textquotedblright} {(Proc.} {Steklov} {Inst.} {Math.} 290, 178{\textendash}188 (2015))},
     journal = {Informatics and Automation},
     pages = {325--327},
     year = {2016},
     volume = {294},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a20/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Correction to the paper “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface” (Proc. Steklov Inst. Math. 290, 178–188 (2015))
JO  - Informatics and Automation
PY  - 2016
SP  - 325
EP  - 327
VL  - 294
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a20/
LA  - ru
ID  - TRSPY_2016_294_a20
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Correction to the paper “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface” (Proc. Steklov Inst. Math. 290, 178–188 (2015))
%J Informatics and Automation
%D 2016
%P 325-327
%V 294
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a20/
%G ru
%F TRSPY_2016_294_a20
O. K. Sheinman. Correction to the paper “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface” (Proc. Steklov Inst. Math. 290, 178–188 (2015)). Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 325-327. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a20/

[1] Sheinman O. K., “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface”, Proc. Steklov Inst. Math., 290, 2015, 178–188 | DOI | DOI | MR | Zbl

[2] Gorsky A., Krichever I., Marshakov A., Mironov A., Morozov A., “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B, 355 (1995), 466–474 ; arXiv: hep-th/9505035 | DOI | MR | Zbl

[3] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229 (2002), 229–269 | DOI | MR | Zbl

[4] Sheinman O. K., Current algebras on Riemann surfaces: New results and applications, De Gruyter Exp. Math., 58, W. de Gruyter, Berlin, 2012 | MR | Zbl