The Hess--Appelrot system and its nonholonomic analogs
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 268-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.
@article{TRSPY_2016_294_a16,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {The {Hess--Appelrot} system and its nonholonomic analogs},
     journal = {Informatics and Automation},
     pages = {268--292},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - The Hess--Appelrot system and its nonholonomic analogs
JO  - Informatics and Automation
PY  - 2016
SP  - 268
EP  - 292
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/
LA  - ru
ID  - TRSPY_2016_294_a16
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T The Hess--Appelrot system and its nonholonomic analogs
%J Informatics and Automation
%D 2016
%P 268-292
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/
%G ru
%F TRSPY_2016_294_a16
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. The Hess--Appelrot system and its nonholonomic analogs. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 268-292. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/

[1] Appelrot G. G., “Po povodu § 1 memuara S. V. Kovalevskoi “Sur le problème de la rotation d'un corps solide autour d'un point fixe” (Acta mathematica. 12. 2)”, Mat. sb., 16:3 (1892), 483–507 | Zbl

[2] Belyaev A. V., “Ob obschem reshenii zadachi o dvizhenii tyazhelogo tverdogo tela v sluchae Gessa”, Mat. sb., 206:5 (2015), 5–34 | DOI | MR | Zbl

[3] Bizyaev I. A., “O neintegriruemosti i prepyatstviyakh k gamiltonizatsii negolonomnogo volchka Chaplygina”, DAN, 458:4 (2014), 398–401 | MR | Zbl

[4] Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626 | DOI | MR | Zbl

[5] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl

[6] Bizyaev I. A., Borisov A. V., Mamaev I. S., “Dynamics of the Chaplygin sleigh on a cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146 | DOI | MR | Zbl

[7] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR | Zbl

[8] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl

[9] Borisov A. V., Jalnine A. Yu., Kuznetsov S. P., Sataev I. R., Sedova Ju. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[10] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl

[11] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., “Sluchai Gessa v dinamike tverdogo tela”, PMM, 67:2 (2003), 256–265 | MR | Zbl

[13] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, In-t kompyut. issled., M.–Izhevsk, 2005 | MR

[14] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225 | MR | Zbl

[15] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[16] Broer H., Simó C., “Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena”, Bol. Soc. Bras. Mat., 29:2 (1998), 253–293 | DOI | MR | Zbl

[17] Chaplygin S. A., “O nekotorykh sluchayakh dvizheniya tverdogo tela v zhidkosti. Statya pervaya”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 6:2 (1894), 20–42; Собр. соч., т. 1, Гостехиздат, М.–Л., 1948, 136–193; “Статья вторая”, Мат. сб., 20:1 (1897), 115–170 ; “Статья вторая (продолженiе)”, Мат. сб., 20:2 (1898), 173–246 ; Собр. соч., т. 1, Гостехиздат, М.–Л., 1948, 194–311 | Zbl

[18] Chaplygin S. A., “Po povodu loksodromicheskogo mayatnika Gessa”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 7:1 (1894), 33–34; Собр. соч., т. 1, Гостехиздат, М.–Л., 1948, 133–135

[19] Dragović V., Gajić B., “Systems of Hess–Appel'rot type”, Commun. Math. Phys., 265:2 (2006), 397–435 | DOI | MR | Zbl

[20] Dragović V., Gajić B., “Matrix Lax polynomials, geometry of Prym varieties and systems of Hess–Appel'rot type”, Lett. Math. Phys., 76:2–3 (2006), 163–186 | DOI | MR | Zbl

[21] Dullin H. R., Worthington J., “The vanishing twist in the restricted three body problem”, Physica D, 276 (2014), 12–20 | DOI | MR | Zbl

[22] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22:9 (2009), 2231–2259 | DOI | MR | Zbl

[23] Fernandez O. E., Bloch A. M., Zenkov D. V., “The geometry and integrability of the Suslov problem”, J. Math. Phys., 55:11 (2014), 112704 | DOI | MR | Zbl

[24] Grammaticos B., Dorizzi B., Ramani A., “Hamiltonians with high-order integrals and the “weak-Painlevé” concept”, J. Math. Phys., 25:12 (1984), 3470–3473 | DOI | MR

[25] Hess W., “Ueber die Euler'schen Bewegungsgleichungen und über eine neue particuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 178–180 | DOI | MR

[26] Kharlamova-Zabelina E. I., “Bystroe vraschenie tverdogo tela vokrug nepodvizhnoi tochki pri nalichii negolonomnoi svyazi”, Vestn. Mosk. un-ta. Matematika. Mekhanika. Astronomiya. Fizika. Khimiya, 1957, no. 6, 25–34

[27] Knauf A., Taimanov I. A., “On the integrability of the $n$-centre problem”, Math. Ann., 331:3 (2005), 631–649 | DOI | MR | Zbl

[28] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, DAN, 93:5 (1953), 763–766 | MR | Zbl

[29] Kolosov G. V., “Ob odnom sluchae dvizheniya tyazhelogo tverdogo tela, opirayuschegosya ostriem na gladkuyu ploskost”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 9:2 (1898), 11–12

[30] Kozlov V. V., “Rasscheplenie separatris vozmuschennoi zadachi Eilera–Puanso”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1976, no. 6, 99–104 | MR | Zbl

[31] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[32] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2000 | MR

[33] Kozlov V., “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724 | DOI | MR

[34] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, PMM, 79:3 (2015), 307–316

[35] Kozlov V. V., “Invariantnye mery gladkikh dinamicheskikh sistem, obobschennye funktsii i metody summirovaniya”, Izv. RAN. Ser. mat., 80:2 (2016), 63–80 | DOI | MR | Zbl

[36] Kozlov V. V., Onischenko D. A., “Neintegriruemost uravnenii Kirkhgofa”, DAN SSSR, 266:6 (1982), 1298–1300 | MR | Zbl

[37] Liouville R., “Sur la rotation des solides”, C. r. Acad. sci., 120:17 (1895), 903–906

[38] Liouville R., “Sur la rotation des solides et le principe de Maxwell”, C. r. Acad. sci., 122:19 (1896), 1050–1051 | Zbl

[39] Lubowiecki P., Żołądek H., “The Hess–Appelrot system. I: Invariant torus and its normal hyperbolicity”, J. Geom. Mech., 4:4 (2012), 443–467 | MR | Zbl

[40] Lubowiecki P., Żołądek H., “The Hess–Appelrot system. II: Perturbation and limit cycles”, J. Diff. Eqns., 252:2 (2012), 1701–1722 | DOI | MR | Zbl

[41] Maciejewski A. J., Przybylska M., “Non-integrability of the Suslov problem”, Regul. Chaotic Dyn., 7:1 (2002), 73–80 | DOI | MR | Zbl

[42] Mlodzeevskii B. K., Nekrasov P. A., “Ob usloviyakh suschestvovaniya asimptoticheskikh periodicheskikh dvizhenii v zadache Gessa”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 6:1 (1893), 43–52

[43] Nekrasov P. A., “K zadache o dvizhenii tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Mat. sb., 16:3 (1892), 508–517 | Zbl

[44] Nekrasov P. A., “Analiticheskoe issledovanie odnogo sluchaya dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Mat. sb., 18:2 (1896), 161–274

[45] Okuneva G. G., “Integrable variants of non-holonomic rigid body problems”, Z. angew. Math. Mech., 78:12 (1998), 833–840 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[46] Simó C., “Invariant curves of analytic perturbed nontwist area preserving maps”, Regul. Chaotic Dyn., 3:3 (1998), 180–195 | DOI | MR | Zbl

[47] Simó C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem”, Physica D, 140:1–2 (2000), 1–32 | DOI | MR | Zbl

[48] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946

[49] Tatarinov Ya. V., “Razdelyayuschiesya peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Tr. seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, 23, Izd-vo MGU, M., 1988, 160–174 | MR

[50] Vagner V. V., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, 5, OGIZ, M.–L., 1941, 301–327 | MR

[51] Zhukovskii N. E., “Loksodromicheskii mayatnik Gessa”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 5:2 (1893), 37–45; Собр. соч., т. 1, Гостехиздат, М., 1948, 257–274

[52] Ziglin S. L., “Rasscheplenie separatris, vetvlenie reshenii i nesuschestvovanie integrala v dinamike tverdogo tela”, Tr. Mosk. mat. o-va, 41, 1980, 287–303 | MR | Zbl