The Hess--Appelrot system and its nonholonomic analogs
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 268-292

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.
@article{TRSPY_2016_294_a16,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {The {Hess--Appelrot} system and its nonholonomic analogs},
     journal = {Informatics and Automation},
     pages = {268--292},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - The Hess--Appelrot system and its nonholonomic analogs
JO  - Informatics and Automation
PY  - 2016
SP  - 268
EP  - 292
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/
LA  - ru
ID  - TRSPY_2016_294_a16
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T The Hess--Appelrot system and its nonholonomic analogs
%J Informatics and Automation
%D 2016
%P 268-292
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/
%G ru
%F TRSPY_2016_294_a16
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. The Hess--Appelrot system and its nonholonomic analogs. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 268-292. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a16/