Elliptic function of level ~$4$
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 216-229

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the theory of elliptic functions of level $n$. An elliptic function of level $n$ determines a Hirzebruch genus called an elliptic genus of level $n$. Elliptic functions of level $n$ are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level $2$ is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form $F(u,v)=(u^2-v^2)/(uB(v)-vB(u))$, $B(0)=1$. The elliptic function of level $3$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2 A(u))/(uA(v)^2-vA(u)^2)$, $A(0)=1$, $A''(0)=0$. In the present study we show that the elliptic function of level $4$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2A(u))/(uB(v)-vB(u))$, where $A(0)=B(0)=1$ and for $B'(0)=A''(0)=0$, $A'(0)=A_1$, and $B''(0)=2B_2$ the following relation holds: $(2B(u)+3A_1u)^2=4A(u)^3-(3A_1^2-8B_2)u^2A(u)^2$. To prove this result, we express the elliptic function of level $4$ in terms of the Weierstrass elliptic functions.
@article{TRSPY_2016_294_a11,
     author = {E. Yu. Bunkova},
     title = {Elliptic function of level ~$4$},
     journal = {Informatics and Automation},
     pages = {216--229},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a11/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
TI  - Elliptic function of level ~$4$
JO  - Informatics and Automation
PY  - 2016
SP  - 216
EP  - 229
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a11/
LA  - ru
ID  - TRSPY_2016_294_a11
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%T Elliptic function of level ~$4$
%J Informatics and Automation
%D 2016
%P 216-229
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a11/
%G ru
%F TRSPY_2016_294_a11
E. Yu. Bunkova. Elliptic function of level ~$4$. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 216-229. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a11/