Polynomial dynamical systems and the Korteweg--de Vries equation
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 191-215

Voir la notice de l'article provenant de la source Math-Net.Ru

We explicitly construct polynomial vector fields $\mathcal L_k$, $k=0,1,2,3,4,6$, on the complex linear space $\mathbb C^6$ with coordinates $X=(x_2,x_3,x_4)$ and $Z=(z_4,z_5,z_6)$. The fields $\mathcal L_k$ are linearly independent outside their discriminant variety $\Delta\subset\mathbb C^6$ and are tangent to this variety. We describe a polynomial Lie algebra of the fields $\mathcal L_k$ and the structure of the polynomial ring $\mathbb C[X,Z]$ as a graded module with two generators $x_2$ and $z_4$ over this algebra. The fields $\mathcal L_1$ and $\mathcal L_3$ commute. Any polynomial $P(X,Z)\in\mathbb C[X,Z]$ determines a hyperelliptic function $P(X,Z)(u_1,u_3)$ of genus $2$, where $u_1$ and $u_3$ are the coordinates of trajectories of the fields $\mathcal L_1$ and $\mathcal L_3$. The function $2x_2(u_1,u_3)$ is a two-zone solution of the Korteweg–de Vries hierarchy, and $\partial z_4(u_1,u_3)/\partial u_1=\partial x_2(u_1,u_3)/\partial u_3$.
@article{TRSPY_2016_294_a10,
     author = {V. M. Buchstaber},
     title = {Polynomial dynamical systems and the {Korteweg--de} {Vries} equation},
     journal = {Informatics and Automation},
     pages = {191--215},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a10/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Polynomial dynamical systems and the Korteweg--de Vries equation
JO  - Informatics and Automation
PY  - 2016
SP  - 191
EP  - 215
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a10/
LA  - ru
ID  - TRSPY_2016_294_a10
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Polynomial dynamical systems and the Korteweg--de Vries equation
%J Informatics and Automation
%D 2016
%P 191-215
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a10/
%G ru
%F TRSPY_2016_294_a10
V. M. Buchstaber. Polynomial dynamical systems and the Korteweg--de Vries equation. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 191-215. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a10/