A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 20-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an asymptotic formula for the second moment of primitive $L$-functions of even weight and prime power level. The error term is estimated uniformly in all parameters: level, weight, shift, and twist.
@article{TRSPY_2016_294_a1,
     author = {Olga G. Balkanova and Dmitry A. Frolenkov},
     title = {A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line},
     journal = {Informatics and Automation},
     pages = {20--53},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a1/}
}
TY  - JOUR
AU  - Olga G. Balkanova
AU  - Dmitry A. Frolenkov
TI  - A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line
JO  - Informatics and Automation
PY  - 2016
SP  - 20
EP  - 53
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a1/
LA  - ru
ID  - TRSPY_2016_294_a1
ER  - 
%0 Journal Article
%A Olga G. Balkanova
%A Dmitry A. Frolenkov
%T A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line
%J Informatics and Automation
%D 2016
%P 20-53
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a1/
%G ru
%F TRSPY_2016_294_a1
Olga G. Balkanova; Dmitry A. Frolenkov. A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 20-53. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a1/

[1] Balkanova O., Frolenkov D., Non-vanishing of automorphic $L$-functions of prime power level, E-print, 2016, arXiv: 1605.02434[math.NT]

[2] Bui H. M., “A note on the second moment of automorphic $L$-functions”, Mathematika, 56:1 (2010), 35–44 | DOI | MR | Zbl

[3] Bykovskii V. A., “Formula sleda dlya skalyarnogo proizvedeniya ryadov Gekke i ee prilozheniya”, Zap. nauch. sem. POMI, 226, 1996, 14–36 | MR | Zbl

[4] Bykovskii V. A., Frolenkov D. A., “O vtorom momente $L$-ryadov golomorfnykh parabolicheskikh form na kriticheskoi pryamoi”, DAN, 463:2 (2015), 133–136 | MR | Zbl

[5] Bykovskii V. A., Frolenkov D. A., “Asimptoticheskie formuly dlya vtorykh momentov $L$-ryadov golomorfnykh parabolicheskikh form na kriticheskoi pryamoi”, Izv. RAN. Ser. mat. (to appear)

[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, Bateman Manuscript Project, McGraw-Hill, New York, 1953 | Zbl

[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Tables of integral transforms, v. 1, Bateman Manuscript Project, McGraw-Hill, New York, 1954 | Zbl

[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, 7-e izd., Nauka, M., 1970

[9] Frolenkov D. A., “Ravnomernye asimptoticheskie formuly dlya gipergeometricheskoi funktsii”, Dalnevost. mat. zhurn., 15:2 (2015), 289–298

[10] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 6th ed., Acad. Press, San Diego, CA, 2000 | MR | Zbl

[11] Iwaniec H., Topics in classical automorphic forms, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[12] Iwaniec H., Sarnak P., “The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros”, Isr. J. Math., 120 (2000), 155–177 | DOI | MR | Zbl

[13] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clarke (Eds), NIST handbook of mathematical functions, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[14] Rouymi D., “Formules de trace et non-annulation de fonctions $L$ automorphes au niveau $\mathfrak p^\nu$”, Acta arith., 147 (2011), 1–32 | DOI | MR | Zbl

[15] Rouymi D., “Mollification et non annulation de fonctions $L$ automorphes en niveau primaire”, J. Number Theory, 132:1 (2012), 79–93 | DOI | MR | Zbl

[16] Royer E., Sur les fonctions $L$ de formes modulaires, PhD Thes, Univ. Paris-Sud, Orsay, 2001