On a~decomposable branching process with two types of particles
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 7-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A decomposable Galton–Watson branching process with two types of particles is considered. It is assumed that particles of the first type produce particles of both the first and the second types, and produce them in equal amounts, while particles of the second type only produce particles of the same type. An asymptotic formula is obtained for the probability that the total number of particles of the second type up to time $N$ is greater than $\theta N$, where $\theta$ is a positive constant and $N\to\infty$. A limit theorem is established for the total number of particles of the first type considered under the condition that the total number of particles of the second type up to time $N$ is greater than $\theta N$.
@article{TRSPY_2016_294_a0,
     author = {V. I. Afanasyev},
     title = {On a~decomposable branching process with two types of particles},
     journal = {Informatics and Automation},
     pages = {7--19},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On a~decomposable branching process with two types of particles
JO  - Informatics and Automation
PY  - 2016
SP  - 7
EP  - 19
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a0/
LA  - ru
ID  - TRSPY_2016_294_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On a~decomposable branching process with two types of particles
%J Informatics and Automation
%D 2016
%P 7-19
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a0/
%G ru
%F TRSPY_2016_294_a0
V. I. Afanasyev. On a~decomposable branching process with two types of particles. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 7-19. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a0/

[1] Vatutin V. A., Dyakonova E. E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Tr. MIAN, 290, 2015, 114–135 | MR | Zbl

[2] Vatutin V. A., Dyakonova E. E., “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskret. matematika, 27:4 (2015), 26–37 | DOI

[3] Afanasev V. I., “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskret. matematika, 27:2 (2015), 22–44 | DOI | MR

[4] Lindvall T., “Convergence of critical Galton–Watson branching processes”, J. Appl. Probab., 9:2 (1972), 445–450 | DOI | MR | Zbl

[5] Lindvall T., “Limit theorems for some functionals of certain Galton–Watson branching processes”, Adv. Appl. Probab., 6:2 (1974), 309–321 | DOI | MR | Zbl

[6] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984 | MR