An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 113-132

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the classical Young's inequality for convolutions of functions is proved in the case of general global Morrey-type spaces. The form of this analog is different from Young's inequality for convolutions in the case of Lebesgue spaces. A separate analysis is performed for the case of periodic functions.
@article{TRSPY_2016_293_a7,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {An analog of {Young's} inequality for convolutions of functions for general {Morrey-type} spaces},
     journal = {Informatics and Automation},
     pages = {113--132},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
JO  - Informatics and Automation
PY  - 2016
SP  - 113
EP  - 132
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/
LA  - ru
ID  - TRSPY_2016_293_a7
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
%J Informatics and Automation
%D 2016
%P 113-132
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/
%G ru
%F TRSPY_2016_293_a7
V. I. Burenkov; T. V. Tararykova. An analog of Young's inequality for convolutions of functions for general Morrey-type spaces. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 113-132. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/