An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 113-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the classical Young's inequality for convolutions of functions is proved in the case of general global Morrey-type spaces. The form of this analog is different from Young's inequality for convolutions in the case of Lebesgue spaces. A separate analysis is performed for the case of periodic functions.
@article{TRSPY_2016_293_a7,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {An analog of {Young's} inequality for convolutions of functions for general {Morrey-type} spaces},
     journal = {Informatics and Automation},
     pages = {113--132},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
JO  - Informatics and Automation
PY  - 2016
SP  - 113
EP  - 132
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/
LA  - ru
ID  - TRSPY_2016_293_a7
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
%J Informatics and Automation
%D 2016
%P 113-132
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/
%G ru
%F TRSPY_2016_293_a7
V. I. Burenkov; T. V. Tararykova. An analog of Young's inequality for convolutions of functions for general Morrey-type spaces. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 113-132. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a7/

[1] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996 | MR

[2] Burenkov V.I., “Sharp estimates for integrals over small intervals for functions possessing some smoothness”, Progress in analysis, Proc. 3rd Int. ISAAC Congr. (Berlin, 2001), 1, World Sci., River Edge, NJ, 2003, 45–56 | DOI | MR

[3] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I, II”, Eurasian Math. J., 3:3 (2012), 8–27 ; 4:1 (2013), 21–45 | MR | MR | Zbl

[4] Burenkov V.I., Evans V.D., “Vesovoe neravenstvo Khardi dlya raznostei i polnaya nepreryvnost vlozheniya prostranstv Soboleva dlya oblastei so skol ugodno silnym vyrozhdeniem”, DAN, 355:5 (1997), 583–585 | MR | Zbl

[5] Burenkov V.I., Evans W.D., “Weighted Hardy-type inequalities for differences and the extension problem for spaces with generalized smoothness”, J. London Math. Soc. Ser. 2., 57:1 (1998), 209–230 | DOI | MR | Zbl

[6] Burenkov V.I., Evans W.D., Goldman M.L., “On weighted Hardy and Poincaré-type inequalities for differences”, J. Inequal. Appl., 1:1 (1997), 1–10 | MR | Zbl

[7] Burenkov V.I., Gogatishvili A., Guliyev V.S., Mustafayev R.Ch., “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Var. Elliptic Eqns., 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[8] Burenkov V.I., Gogatishvili A., Guliyev V.S., Mustafayev R.Ch., “Boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 35:1 (2011), 67–87 | DOI | MR | Zbl

[9] Burenkov V.I., Goldman M.L., “O tochnykh analogakh neravenstva Khardi dlya raznostei v sluchae svyazannykh vesov”, DAN, 366:2 (1999), 155–157 | MR | Zbl

[10] Burenkov V.I., Goldman M.L., “Neravenstva tipa Khardi dlya modulei nepreryvnosti”, Tr. MIAN, 227 (1999), 92–108 | MR | Zbl

[11] Burenkov V.I., Goldman M.L., “Necessary and sufficient conditions for the boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Math. Inequal. Appl., 17:2 (2014), 401–418 | MR | Zbl

[12] Burenkov V.I., Guliev G.V., “Neobkhodimye i dostatochnye usloviya ogranichennosti maksimalnogo operatora v lokalnykh prostranstvakh tipa Morri”, DAN, 391:5 (2003), 591–594 | MR | Zbl

[13] Burenkov V.I., Guliyev H.V., “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Stud. math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[14] Burenkov V.I., Guliyev H.V., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl

[15] Burenkov V.I., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[16] Burenkov V.I., Guliev V.S., Guliev G.V., “Neobkhodimye i dostatochnye usloviya ogranichennosti drobnogo maksimalnogo operatora v lokalnykh prostranstvakh tipa Morri”, DAN, 409:4 (2006), 443–447 | MR

[17] Burenkov V.I., Guliev V.S., Guliev G.V., “Neobkhodimye i dostatochnye usloviya ogranichennosti potentsiala Rissa v lokalnykh prostranstvakh tipa Morri”, DAN, 412:5 (2007), 585–589 | MR | Zbl

[18] Burenkov V.I., Guliyev V.S., Serbetci A., Tararykova T.V., “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl

[19] Burenkov V.I., Guliev V.S., Tararykova T.V., Sherbetchi A., “Neobkhodimye i dostatochnye usloviya ogranichennosti istinnykh singulyarnykh integralnykh operatorov v lokalnykh prostranstvakh tipa Morri”, DAN, 422:1 (2008), 11–14 | MR | Zbl

[20] Burenkov V.I., Jain P., Tararykova T.V., “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl

[21] Burenkov V.I., Nursultanov E.D., Chigambaeva D.K., “Opisanie interpolyatsionnykh prostranstv dlya pary lokalnykh prostranstv tipa Morri i ikh obobschenii”, Tr. MIAN, 284 (2014), 105–137 | MR | Zbl

[22] Burenkov V.I., Oinarov R., “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space”, Math. Inequal. Appl., 16:1 (2013), 1–19 | MR | Zbl

[23] Burenkov V.I., Sawano Y., “Necessary and sufficient conditions for the boundedness of classical operators of real analysis in general Morrey-type spaces”, Proc. Symp. on Real Analysis, Ibaraki Univ., 2012, Ibaraki Univ., Mito, 2013, 81–90

[24] Guliyev V.S., “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl

[25] Kurata K., Nishigaki S., Sugano S., “Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators”, Proc. Amer. Math. Soc., 128:4 (2000), 1125–1134 | DOI | MR | Zbl

[26] Kuttner B., “Some theorems on fractional derivatives”, Proc. London Math. Soc. Ser. 3, 3 (1953), 480–497 | DOI | MR | Zbl

[27] Kuznetsov Yu.V., “O skleike funktsii iz prostranstv $W_{p,\theta }^r$”, Tr. MIAN, 140 (1976), 191–200 | Zbl

[28] Lemarié-Rieusset P.G., “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93 | MR | Zbl

[29] Mizuhara T., “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic analysis, Proc. Conf. Sendai (Japan), 1990, ICM-90 Satell. Conf. Proc., ed. S. Igari, Springer, Tokyo, 1991, 183–189 | MR

[30] Nakai E., “Recent topics of fractional integrals”, Sugaku Expo., 20:2 (2007), 215–235 | MR | Zbl

[31] Nikolskii S.M., “Ob odnom svoistve klassov $H_p^{(r)}$”, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math., 3–4 (1960/1961), 205–216 | MR

[32] Nikolskii S.M., “O teoremakh vlozheniya, prodolzheniya i priblizheniya differentsiruemykh funktsii mnogikh peremennykh”, UMN, 16:5 (1961), 63–114 | MR

[33] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR

[34] Rafeiro H., Samko N., Samko S., “Morrey–Campanato spaces: An overview”, Operator theory, pseudo-differential equations, and mathematical physics, Oper. Theory Adv. Appl., 228, Birkhäuser, Basel, 2013, 293–323 | MR | Zbl

[35] Ragusa M.A., “Operators in Morrey type spaces and applications”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl

[36] Sickel W., “Smoothness spaces related to Morrey spaces—a survey. I, II”, Eurasian Math. J., 3:3 (2012), 110–149 ; 4:1 (2013), 82–124 | MR | Zbl | MR | Zbl

[37] Tararykova T.V., “Comments on definitions of general local and global Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 125–134 | MR | Zbl

[38] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 ; Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl | MR