Spaces of functions of positive smoothness on irregular domains
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 62-72

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to constructing and studying spaces of functions of positive smoothness on irregular domains of the $n$-dimensional Euclidean space. We prove embedding theorems that connect the spaces introduced with the Sobolev and Lebesgue spaces. The formulations of the theorems depend on geometric parameters of the domain of definition of functions.
@article{TRSPY_2016_293_a3,
     author = {O. V. Besov},
     title = {Spaces of functions of positive smoothness on irregular domains},
     journal = {Informatics and Automation},
     pages = {62--72},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a3/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Spaces of functions of positive smoothness on irregular domains
JO  - Informatics and Automation
PY  - 2016
SP  - 62
EP  - 72
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a3/
LA  - ru
ID  - TRSPY_2016_293_a3
ER  - 
%0 Journal Article
%A O. V. Besov
%T Spaces of functions of positive smoothness on irregular domains
%J Informatics and Automation
%D 2016
%P 62-72
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a3/
%G ru
%F TRSPY_2016_293_a3
O. V. Besov. Spaces of functions of positive smoothness on irregular domains. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 62-72. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a3/