Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_293_a22, author = {Hans Triebel}, title = {A note on function spaces in rough domains}, journal = {Informatics and Automation}, pages = {346--351}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a22/} }
Hans Triebel. A note on function spaces in rough domains. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 346-351. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a22/
[1] Besov O.V., “Prostranstva funktsii tipa Lizorkina–Tribelya na neregulyarnoi oblasti”, Tr. MIAN, 260 (2008), 32–43 | MR | Zbl
[2] Besov O.V., “Function spaces of Lizorkin–Triebel type on an irregular domain”, Nonlinear Anal. Theory Methods. Appl. A., 70:8 (2009), 2842–2845 | DOI | MR | Zbl
[3] Besov O.V., “Prostranstva funktsii drobnoi gladkosti na neregulyarnoi oblasti”, DAN, 425:4 (2009), 439–442 | MR | Zbl
[4] Besov O.V., “Teorema vlozheniya Soboleva dlya anizotropno neregulyarnykh oblastei”, DAN, 438:5 (2011), 586–589
[5] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; 2-е изд., Наука, М., 1996 | MR
[6] Edmunds D.E., Triebel H., Function spaces, entropy numbers, differential operators, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[7] Ihnatsyeva L., Vähäkangas A.V., “Characterization of traces of smooth functions on Ahlfors regular sets”, J. Funct. Anal., 265:9 (2013), 1870–1915 | DOI | MR | Zbl
[8] Ihnatsyeva L., Vähäkangas A., “Hardy inequalities in Triebel–Lizorkin spaces”, Indiana Univ. Math. J., 62:6 (2013), 1785–1807 | DOI | MR | Zbl
[9] Ihnatsyeva L., Vähäkangas A.V., “Hardy inequalities in Triebel–Lizorkin spaces. II: Aikawa dimension”, Ann. Mat. Pura Appl. Ser. 4, 194:2 (2015), 479–493 | DOI | MR | Zbl
[10] Maz'ya V., Sobolev spaces, 2nd ed., Springer, Berlin, 1985 | MR | Zbl
[11] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 ; 2-е изд., Наука, М., 1977 | MR
[12] Scharf B., “Wavelet decomposition techniques and Hardy inequalities for function spaces on cubes”, J. Approx. Theory., 178 (2014), 41–63 | DOI | MR | Zbl
[13] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950
[14] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978 ; 2nd ed., Barth, Heidelberg, 1995 | MR | Zbl | Zbl
[15] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl
[16] Triebel H., “Hardy inequalities in function spaces”, Math. Bohem., 124 (1999), 123–130 | MR | Zbl
[17] Triebel H., The structure of functions, Birkhäuser, Basel, 2001 | MR | Zbl
[18] Triebel H., “Non-smooth atoms and pointwise multipliers in function spaces”, Ann. Mat. Pura Appl. Ser. 4, 182:4 (2003), 457–486 | DOI | MR | Zbl
[19] Triebel H., Theory of function spaces. III, Birkhäuser, Basel, 2006 | MR | Zbl
[20] Triebel H., Function spaces and wavelets on domains, European Math. Soc., Zürich, 2008 | MR | Zbl
[21] Triebel H., Winkelvoß H., “Intrinsic atomic characterizations of function spaces on domains”, Math. Z., 221:4 (1996), 647–673 | DOI | MR | Zbl
[22] Zhou Y., “Fractional Sobolev extension and imbedding”, Trans. Amer. Math. Soc., 367:2 (2015), 959–979 | DOI | MR | Zbl