Geometric relations between the zeros of polynomials
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 325-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the classical theorem of Grace, which gives a condition for a geometric relation between two arbitrary algebraic polynomials of the same degree. This theorem is one of the basic instruments in the geometry of polynomials. In some applications of the Grace theorem, one of the two polynomials is fixed. In this case, the condition in the Grace theorem may be changed. We explore this opportunity and introduce a new notion of locus of a polynomial. Using the loci of polynomials, we may improve some theorems in the geometry of polynomials. In general, the loci of a polynomial are not easy to describe. We prove some statements concerning the properties of a point set on the extended complex plane that is a locus of a polynomial.
@article{TRSPY_2016_293_a20,
     author = {Bl. Sendov},
     title = {Geometric relations between the zeros of polynomials},
     journal = {Informatics and Automation},
     pages = {325--332},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a20/}
}
TY  - JOUR
AU  - Bl. Sendov
TI  - Geometric relations between the zeros of polynomials
JO  - Informatics and Automation
PY  - 2016
SP  - 325
EP  - 332
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a20/
LA  - ru
ID  - TRSPY_2016_293_a20
ER  - 
%0 Journal Article
%A Bl. Sendov
%T Geometric relations between the zeros of polynomials
%J Informatics and Automation
%D 2016
%P 325-332
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a20/
%G ru
%F TRSPY_2016_293_a20
Bl. Sendov. Geometric relations between the zeros of polynomials. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 325-332. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a20/

[1] Rahman Q.I., Schmeisser G., Analytic theory of polynomials, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[2] Sendov Bl., Sendov H., “Loci of complex polynomials. Part I”, Trans. Amer. Math. Soc., 366:10 (2014), 5155–5184 | DOI | MR | Zbl

[3] Sendov Bl., Sendov H., “Loci of complex polynomials. Part II: Polar derivatives”, Math. Proc. Cambridge Philos. Soc., 159:2 (2015), 253–273 | DOI | MR