On a~class of weighted inequalities containing quasilinear operators
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 280-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization of weighted $L^p$$L^r$ inequalities on a half-axis is obtained for positive quasilinear operators with Oinarov kernels.
@article{TRSPY_2016_293_a18,
     author = {D. V. Prokhorov},
     title = {On a~class of weighted inequalities containing quasilinear operators},
     journal = {Informatics and Automation},
     pages = {280--295},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a18/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - On a~class of weighted inequalities containing quasilinear operators
JO  - Informatics and Automation
PY  - 2016
SP  - 280
EP  - 295
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a18/
LA  - ru
ID  - TRSPY_2016_293_a18
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T On a~class of weighted inequalities containing quasilinear operators
%J Informatics and Automation
%D 2016
%P 280-295
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a18/
%G ru
%F TRSPY_2016_293_a18
D. V. Prokhorov. On a~class of weighted inequalities containing quasilinear operators. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 280-295. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a18/

[1] Oinarov R., “Vesovye neravenstva dlya odnogo klassa integralnykh operatorov”, DAN SSSR, 319:5 (1991), 1076–1078

[2] Burenkov V.I., Oinarov R., “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space”, Math. Inequal. Appl., 16 (2013), 1–19 | MR | Zbl

[3] Goldman M.L., Sorokina M.V., “Trekhvesovoe neravenstvo tipa Khardi na konuse kvazimonotonnykh funktsii”, DAN, 401:3 (2005), 301–305 | MR | Zbl

[4] Stepanov V.D., Shambilova G.E., “O vesovoi ogranichennosti odnogo klassa kvazilineinykh operatorov na konuse monotonnykh funktsii”, DAN, 458:3 (2014), 268–271 | MR | Zbl

[5] Persson L.-E., Shambilova G.E., Stepanov V.D., “Hardy-type inequalities on the weighted cones of quasi-concave functions”, Banach J. Math. Anal., 9:2 (2015), 21–34 | DOI | MR | Zbl

[6] Prokhorov D.V., Stepanov V.D., “Vesovye otsenki odnogo klassa sublineinykh operatorov”, DAN, 453:5 (2013), 486–488 | Zbl

[7] Prokhorov D.V., Stepanov V.D., “O vesovykh neravenstvakh Khardi v smeshannykh normakh”, Tr. MIAN, 283 (2013), 155–170 | Zbl

[8] Prokhorov D.V., Stepanov V.D., “Otsenki odnogo klassa sublineinykh integralnykh operatorov”, DAN, 456:6 (2014), 645–649 | MR | Zbl

[9] Prokhorov D.V., “Ob ogranichennosti i kompaktnosti integralnogo operatora, soderzhaschego supremum”, Tr. MIAN, 283 (2013), 142–154 | MR | Zbl

[10] D. V. Prokhorov, V. D. Stepanov, “Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces”, Sb. Math., 207:8 (2016), 1159–1186 | DOI | DOI | MR | Zbl

[11] Prokhorov D.V., “Ob ogranichennosti odnogo klassa sublineinykh operatorov”, DAN, 464:6 (2015), 668–671 | MR | Zbl

[12] Gogatishvili A., Mustafayev R.Ch., Persson L.-E., “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012, 734194 | MR | Zbl

[13] Gogatishvili A., Mustafayev R., Persson L.-E., “Some new iterated Hardy-type inequalities: the case $\theta =1$”, J. Inequal. Appl., 2013, 515 | DOI | MR | Zbl

[14] Oinarov R., Kalybay A., “Weighted inequalities for a class of semiadditive operators”, Ann. Funct. Anal., 6:4 (2015), 155–171 | DOI | MR | Zbl

[15] Aguilar Cañestro M.I., Ortega Salvador P., Ramírez Torreblanca C., “Weighted bilinear Hardy inequalities”, J. Math. Anal. Appl., 387 (2012), 320–334 | DOI | MR | Zbl

[16] Gol'dman M.L., Heinig H.P., Stepanov V.D., “On the principle of duality in Lorentz spaces”, Can. J. Math., 48 (1996), 959–979 | DOI | MR | Zbl

[17] Gogatishvili A., Stepanov V.D., “Reduktsionnye teoremy dlya vesovykh integralnykh neravenstv na konuse monotonnykh funktsii”, UMN, 68:4 (2013), 3–68 | DOI | MR | Zbl

[18] Oinarov R., “Dvustoronnie otsenki normy nekotorykh klassov integralnykh operatorov”, Tr. MIAN, 204 (1993), 240–250 | Zbl

[19] Stepanov V.D., “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. Ser. 2., 50:1 (1994), 105–120 | DOI | MR | Zbl

[20] Stepanov V.D., Ushakova E.P., “Alternative criteria for the boundedness of Volterra integral operators in Lebesgue spaces”, Math. Inequal. Appl., 12 (2009), 873–889 | MR | Zbl

[21] Stepanov V.D., Ushakova E.P., “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13 (2010), 449–510 | MR | Zbl

[22] Prokhorov D.V., “Ob odnom vesovom neravenstve dlya operatora tipa Khardi”, Tr. MIAN, 284 (2014), 216–223 | MR