Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_293_a18, author = {D. V. Prokhorov}, title = {On a~class of weighted inequalities containing quasilinear operators}, journal = {Informatics and Automation}, pages = {280--295}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a18/} }
D. V. Prokhorov. On a~class of weighted inequalities containing quasilinear operators. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 280-295. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a18/
[1] Oinarov R., “Vesovye neravenstva dlya odnogo klassa integralnykh operatorov”, DAN SSSR, 319:5 (1991), 1076–1078
[2] Burenkov V.I., Oinarov R., “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space”, Math. Inequal. Appl., 16 (2013), 1–19 | MR | Zbl
[3] Goldman M.L., Sorokina M.V., “Trekhvesovoe neravenstvo tipa Khardi na konuse kvazimonotonnykh funktsii”, DAN, 401:3 (2005), 301–305 | MR | Zbl
[4] Stepanov V.D., Shambilova G.E., “O vesovoi ogranichennosti odnogo klassa kvazilineinykh operatorov na konuse monotonnykh funktsii”, DAN, 458:3 (2014), 268–271 | MR | Zbl
[5] Persson L.-E., Shambilova G.E., Stepanov V.D., “Hardy-type inequalities on the weighted cones of quasi-concave functions”, Banach J. Math. Anal., 9:2 (2015), 21–34 | DOI | MR | Zbl
[6] Prokhorov D.V., Stepanov V.D., “Vesovye otsenki odnogo klassa sublineinykh operatorov”, DAN, 453:5 (2013), 486–488 | Zbl
[7] Prokhorov D.V., Stepanov V.D., “O vesovykh neravenstvakh Khardi v smeshannykh normakh”, Tr. MIAN, 283 (2013), 155–170 | Zbl
[8] Prokhorov D.V., Stepanov V.D., “Otsenki odnogo klassa sublineinykh integralnykh operatorov”, DAN, 456:6 (2014), 645–649 | MR | Zbl
[9] Prokhorov D.V., “Ob ogranichennosti i kompaktnosti integralnogo operatora, soderzhaschego supremum”, Tr. MIAN, 283 (2013), 142–154 | MR | Zbl
[10] D. V. Prokhorov, V. D. Stepanov, “Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces”, Sb. Math., 207:8 (2016), 1159–1186 | DOI | DOI | MR | Zbl
[11] Prokhorov D.V., “Ob ogranichennosti odnogo klassa sublineinykh operatorov”, DAN, 464:6 (2015), 668–671 | MR | Zbl
[12] Gogatishvili A., Mustafayev R.Ch., Persson L.-E., “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012, 734194 | MR | Zbl
[13] Gogatishvili A., Mustafayev R., Persson L.-E., “Some new iterated Hardy-type inequalities: the case $\theta =1$”, J. Inequal. Appl., 2013, 515 | DOI | MR | Zbl
[14] Oinarov R., Kalybay A., “Weighted inequalities for a class of semiadditive operators”, Ann. Funct. Anal., 6:4 (2015), 155–171 | DOI | MR | Zbl
[15] Aguilar Cañestro M.I., Ortega Salvador P., Ramírez Torreblanca C., “Weighted bilinear Hardy inequalities”, J. Math. Anal. Appl., 387 (2012), 320–334 | DOI | MR | Zbl
[16] Gol'dman M.L., Heinig H.P., Stepanov V.D., “On the principle of duality in Lorentz spaces”, Can. J. Math., 48 (1996), 959–979 | DOI | MR | Zbl
[17] Gogatishvili A., Stepanov V.D., “Reduktsionnye teoremy dlya vesovykh integralnykh neravenstv na konuse monotonnykh funktsii”, UMN, 68:4 (2013), 3–68 | DOI | MR | Zbl
[18] Oinarov R., “Dvustoronnie otsenki normy nekotorykh klassov integralnykh operatorov”, Tr. MIAN, 204 (1993), 240–250 | Zbl
[19] Stepanov V.D., “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. Ser. 2., 50:1 (1994), 105–120 | DOI | MR | Zbl
[20] Stepanov V.D., Ushakova E.P., “Alternative criteria for the boundedness of Volterra integral operators in Lebesgue spaces”, Math. Inequal. Appl., 12 (2009), 873–889 | MR | Zbl
[21] Stepanov V.D., Ushakova E.P., “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13 (2010), 449–510 | MR | Zbl
[22] Prokhorov D.V., “Ob odnom vesovom neravenstve dlya operatora tipa Khardi”, Tr. MIAN, 284 (2014), 216–223 | MR