Hardy--Steklov operators and Sobolev-type embedding inequalities
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 236-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize weighted inequalities corresponding to the embedding of a class of absolutely continuous functions into a fractional-order Sobolev space. As auxiliary results of the paper, which are also of independent interest, we obtain several new types of necessary and sufficient conditions for the boundedness of the Hardy–Steklov operator (integral operator with two variable limits) in weighted Lebesgue spaces.
@article{TRSPY_2016_293_a16,
     author = {M. G. Nasyrova and E. P. Ushakova},
     title = {Hardy--Steklov operators and {Sobolev-type} embedding inequalities},
     journal = {Informatics and Automation},
     pages = {236--262},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a16/}
}
TY  - JOUR
AU  - M. G. Nasyrova
AU  - E. P. Ushakova
TI  - Hardy--Steklov operators and Sobolev-type embedding inequalities
JO  - Informatics and Automation
PY  - 2016
SP  - 236
EP  - 262
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a16/
LA  - ru
ID  - TRSPY_2016_293_a16
ER  - 
%0 Journal Article
%A M. G. Nasyrova
%A E. P. Ushakova
%T Hardy--Steklov operators and Sobolev-type embedding inequalities
%J Informatics and Automation
%D 2016
%P 236-262
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a16/
%G ru
%F TRSPY_2016_293_a16
M. G. Nasyrova; E. P. Ushakova. Hardy--Steklov operators and Sobolev-type embedding inequalities. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 236-262. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a16/