Some boundary value problems in three-dimensional domains
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 157-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Some nonstandard boundary value problems are studied for the stationary Poisson system, Stokes system, and Navier–Stokes system. The problems under consideration are “intermediate” between the Dirichlet problem and Neumann problem. The well-posedness of these problems is proved.
@article{TRSPY_2016_293_a10,
     author = {Yulii A. Dubinskii},
     title = {Some boundary value problems in three-dimensional domains},
     journal = {Informatics and Automation},
     pages = {157--166},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a10/}
}
TY  - JOUR
AU  - Yulii A. Dubinskii
TI  - Some boundary value problems in three-dimensional domains
JO  - Informatics and Automation
PY  - 2016
SP  - 157
EP  - 166
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a10/
LA  - ru
ID  - TRSPY_2016_293_a10
ER  - 
%0 Journal Article
%A Yulii A. Dubinskii
%T Some boundary value problems in three-dimensional domains
%J Informatics and Automation
%D 2016
%P 157-166
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a10/
%G ru
%F TRSPY_2016_293_a10
Yulii A. Dubinskii. Some boundary value problems in three-dimensional domains. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 157-166. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a10/