Nonlinear trigonometric approximations of multivariate function classes
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
@article{TRSPY_2016_293_a1,
     author = {D. B. Bazarkhanov},
     title = {Nonlinear trigonometric approximations of multivariate function classes},
     journal = {Informatics and Automation},
     pages = {8--42},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Nonlinear trigonometric approximations of multivariate function classes
JO  - Informatics and Automation
PY  - 2016
SP  - 8
EP  - 42
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a1/
LA  - ru
ID  - TRSPY_2016_293_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Nonlinear trigonometric approximations of multivariate function classes
%J Informatics and Automation
%D 2016
%P 8-42
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a1/
%G ru
%F TRSPY_2016_293_a1
D. B. Bazarkhanov. Nonlinear trigonometric approximations of multivariate function classes. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a1/