On Catalan's constant
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 159-176

Voir la notice de l'article provenant de la source Math-Net.Ru

A new efficient construction of Diophantine approximations to Catalan's constant is presented that is based on the direct analysis of the representation of a hypergeometric function with specially chosen half-integer parameters as a series and as a double Euler integral over the unit cube. This allows one to significantly simplify the proofs of Diophantine results available in this domain and substantially extend the capabilities of the method. The sequences of constructed rational approximations are not good enough to prove irrationality, but the results established allow one to compare the quality of various constructions.
@article{TRSPY_2016_292_a9,
     author = {Yu. V. Nesterenko},
     title = {On {Catalan's} constant},
     journal = {Informatics and Automation},
     pages = {159--176},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a9/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - On Catalan's constant
JO  - Informatics and Automation
PY  - 2016
SP  - 159
EP  - 176
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a9/
LA  - ru
ID  - TRSPY_2016_292_a9
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T On Catalan's constant
%J Informatics and Automation
%D 2016
%P 159-176
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a9/
%G ru
%F TRSPY_2016_292_a9
Yu. V. Nesterenko. On Catalan's constant. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 159-176. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a9/