Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a3, author = {E. Yu. Bunkova and V. M. Buchstaber and A. V. Ustinov}, title = {Coefficient rings of {Tate} formal groups determining {Krichever} genera}, journal = {Informatics and Automation}, pages = {43--68}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a3/} }
TY - JOUR AU - E. Yu. Bunkova AU - V. M. Buchstaber AU - A. V. Ustinov TI - Coefficient rings of Tate formal groups determining Krichever genera JO - Informatics and Automation PY - 2016 SP - 43 EP - 68 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a3/ LA - ru ID - TRSPY_2016_292_a3 ER -
E. Yu. Bunkova; V. M. Buchstaber; A. V. Ustinov. Coefficient rings of Tate formal groups determining Krichever genera. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 43-68. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a3/
[1] Bukhshtaber V.M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl
[2] Bukhshtaber V.M., “Kompleksnye kobordizmy i formalnye gruppy”, UMN, 67:5 (2012), 111–174 | DOI | MR
[3] Bukhshtaber V.M., Bunkova E.Yu., “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR
[4] Bukhshtaber V.M., Bunkova E.Yu., “Universalnaya formalnaya gruppa, opredelyayuschaya ellipticheskuyu funktsiyu urovnya $3$”, Chebyshev. sb., 16:2 (2015), 66–78 | MR
[5] Bukhshtaber V.M., Mischenko A.S., Novikov S.P., “Formalnye gruppy i ikh rol v apparate algebraicheskoi topologii”, UMN, 26:2 (1971), 131–154 | MR | Zbl
[6] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[7] Bukhshtaber V.M., Ustinov A.V., “Koltsa koeffitsientov formalnykh grupp”, Mat. sb., 206:11 (2015), 19–60 | DOI | MR
[8] Hattori A., “Integral characteristic numbers for weakly almost complex manifolds”, Topology, 5:3 (1966), 259–280 | DOI | MR | Zbl
[9] Hazewinkel M., Formal groups and applications, Acad. Press, New York, 1978 | MR | Zbl
[10] Hirzebruch F., Elliptic genera of level $N$ for complex manifolds, Preprint 88-24, Max-Planck-Inst. Math., Bonn, 1988 | MR
[11] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Friedr. Vieweg, Wiesbaden, 1992 | DOI | MR | Zbl
[12] Khonda T., “Formalnye gruppy i dzeta-funktsii”, Matematika: Sb. per., 13:6 (1969), 3–17 | MR
[13] Krichever I.M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Mat. zametki, 47:2 (1990), 34–45 | MR
[14] Lazard M., “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. math. France, 83 (1955), 251–274 | MR | Zbl
[15] Novikov S.P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. mat., 31:4 (1967), 855–951 | Zbl
[16] Novikov S.P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. mat., 32:6 (1968), 1245–1263 | MR | Zbl
[17] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl
[18] Von Oehsen J.B., “Elliptic genera of level $N$ and Jacobi polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 303–312 | MR | Zbl
[19] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl
[20] Stong R.E., “Relations among characteristic numbers. I, II”, Topology, 4:3 (1965), 267–281 ; 5:2 (1966), 133–148 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Tate J.T., “The arithmetic of elliptic curves”, Invent. math., 23:3–4 (1974), 179–206 | DOI | MR | Zbl
[22] Witten E., “Elliptic genera and quantum field theory”, Commun. Math. Phys., 109 (1987), 525–536 | DOI | MR | Zbl