Coefficient rings of Tate formal groups determining Krichever genera
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 43-68
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to problems at the intersection of formal group theory, the theory of Hirzebruch genera, and the theory of elliptic functions. In the focus of our interest are Tate formal groups corresponding to the general five-parametric model of the elliptic curve as well as formal groups corresponding to the general four-parametric Krichever genus. We describe coefficient rings of formal groups whose exponentials are determined by elliptic functions of levels $2$ and $3$.
@article{TRSPY_2016_292_a3,
author = {E. Yu. Bunkova and V. M. Buchstaber and A. V. Ustinov},
title = {Coefficient rings of {Tate} formal groups determining {Krichever} genera},
journal = {Informatics and Automation},
pages = {43--68},
publisher = {mathdoc},
volume = {292},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a3/}
}
TY - JOUR AU - E. Yu. Bunkova AU - V. M. Buchstaber AU - A. V. Ustinov TI - Coefficient rings of Tate formal groups determining Krichever genera JO - Informatics and Automation PY - 2016 SP - 43 EP - 68 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a3/ LA - ru ID - TRSPY_2016_292_a3 ER -
E. Yu. Bunkova; V. M. Buchstaber; A. V. Ustinov. Coefficient rings of Tate formal groups determining Krichever genera. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 43-68. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a3/