Representation and character varieties of the Baumslag--Solitar groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 26-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Representation and character varieties of the Baumslag–Solitar groups $\mathrm {BS}(p,q)$ are analyzed. Irreducible components of these varieties are found, and their dimension is calculated. It is proved that all irreducible components of the representation variety $R_n(\mathrm {BS}(p,q))$ are rational varieties of dimension $n^2$, and each irreducible component of the character variety $X_n(\mathrm {BS}(p,q))$ is a rational variety of dimension $k\le n$. The smoothness of irreducible components of the variety $R_n^\mathrm s(\mathrm {BS}(p,q))$ of irreducible representations is established, and it is proved that all irreducible components of the variety $X_n^\mathrm s(\mathrm {BS}(p,q))$ are isomorphic to $\mathbb {A}^1\setminus \{0\}$.
@article{TRSPY_2016_292_a2,
     author = {V. V. Benyash-Krivets and I. O. Govorushko},
     title = {Representation and character varieties of the {Baumslag--Solitar} groups},
     journal = {Informatics and Automation},
     pages = {26--42},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
AU  - I. O. Govorushko
TI  - Representation and character varieties of the Baumslag--Solitar groups
JO  - Informatics and Automation
PY  - 2016
SP  - 26
EP  - 42
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/
LA  - ru
ID  - TRSPY_2016_292_a2
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%A I. O. Govorushko
%T Representation and character varieties of the Baumslag--Solitar groups
%J Informatics and Automation
%D 2016
%P 26-42
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/
%G ru
%F TRSPY_2016_292_a2
V. V. Benyash-Krivets; I. O. Govorushko. Representation and character varieties of the Baumslag--Solitar groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 26-42. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/

[1] Mumford D., Fogarty J., Geometric invariant theory, Springer, Berlin, 1982 | MR | Zbl

[2] Lubotzky A., Magid A.R., Varieties of representations of finitely generated groups, Mem. AMS, 58, Amer. Math. Soc., Providence, RI, 1985 | MR

[3] Rudnick Z., “Representation varieties of solvable groups”, J. Pure Appl. Algebra, 45 (1987), 261–272 | DOI | MR | Zbl

[4] Rapinchuk A.S., Benyash-Krivetz V.V., Chernousov V.I., “Representation varieties of the fundamental groups of compact orientable surfaces”, Isr. J. Math., 93 (1996), 29–71 | DOI | MR | Zbl

[5] Benyash-Krivets V.V., Chernousov V.I., “Mnogoobraziya predstavlenii fundamentalnykh grupp kompaktnykh neorientiruemykh poverkhnostei”, Mat. sb., 188:7 (1997), 47–92 | DOI | MR | Zbl

[6] Baumslag G., Solitar D., “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68:3 (1962), 199–201 | DOI | MR | Zbl

[7] Meskin S., “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc., 164 (1972), 105–114 | DOI | MR | Zbl

[8] McLaury D., “Irreducible representations of Baumslag–Solitar groups”, J. Group Theory, 15:4 (2012), 543–552 | DOI | MR | Zbl

[9] Dudkin F.A., “Neprivodimye predstavleniya podgrupp konechnogo indeksa grupp Baumslaga–Solitera”, Sib. mat. zhurn., 54:6 (2013), 1273–1279 | MR | Zbl

[10] Benyash-Krivets V.V., Govorushko I.O., “O mnogoobraziyakh predstavlenii grupp Baumslaga–Solitera”, Vestn. BGU. Ser. 1, 2014, no. 2, 68–70

[11] Gantmakher F.R., Teoriya matrits, Nauka, M., 1967 | MR

[12] Shafarevich I.R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1988 | MR

[13] Artin M., “On Azumaya algebras and finite dimensional representations of rings”, J. Algebra, 11 (1969), 532–563 | DOI | MR | Zbl

[14] Mamford D., Algebraicheskaya geometriya. T. 1: Kompleksnye proektivnye mnogoobraziya, Mir, M., 1979 | MR

[15] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR

[16] Platonov V.P., Benyash-Krivets V.V., “Koltsa kharakterov predstavlenii konechno-porozhdennykh grupp”, Tr. MIAN, 183 (1990), 169–178 | MR | Zbl

[17] Procesi C., “The invariant theory of $n\times n$ matrices”, Adv. Math., 19:3 (1976), 306–381 | DOI | MR | Zbl

[18] Razmyslov Yu.P., “Tozhdestva so sledom polnykh matrichnykh algebr nad polem kharakteristiki nul”, Izv. AN SSSR. Ser. mat., 38:4 (1974), 723–756 | MR

[19] Vinberg E.B., “On invariants of a set of matrices”, J. Lie Theory, 6:2 (1996), 249–269 | MR | Zbl