Representation and character varieties of the Baumslag--Solitar groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 26-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Representation and character varieties of the Baumslag–Solitar groups $\mathrm {BS}(p,q)$ are analyzed. Irreducible components of these varieties are found, and their dimension is calculated. It is proved that all irreducible components of the representation variety $R_n(\mathrm {BS}(p,q))$ are rational varieties of dimension $n^2$, and each irreducible component of the character variety $X_n(\mathrm {BS}(p,q))$ is a rational variety of dimension $k\le n$. The smoothness of irreducible components of the variety $R_n^\mathrm s(\mathrm {BS}(p,q))$ of irreducible representations is established, and it is proved that all irreducible components of the variety $X_n^\mathrm s(\mathrm {BS}(p,q))$ are isomorphic to $\mathbb {A}^1\setminus \{0\}$.
@article{TRSPY_2016_292_a2,
author = {V. V. Benyash-Krivets and I. O. Govorushko},
title = {Representation and character varieties of the {Baumslag--Solitar} groups},
journal = {Informatics and Automation},
pages = {26--42},
publisher = {mathdoc},
volume = {292},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/}
}
TY - JOUR AU - V. V. Benyash-Krivets AU - I. O. Govorushko TI - Representation and character varieties of the Baumslag--Solitar groups JO - Informatics and Automation PY - 2016 SP - 26 EP - 42 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/ LA - ru ID - TRSPY_2016_292_a2 ER -
V. V. Benyash-Krivets; I. O. Govorushko. Representation and character varieties of the Baumslag--Solitar groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 26-42. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a2/