Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a14, author = {A. A. Sharomet}, title = {On representation varieties of free abelian groups}, journal = {Informatics and Automation}, pages = {255--263}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/} }
A. A. Sharomet. On representation varieties of free abelian groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/
[1] Lubotzky A., Magid A.R., Varieties of representations of finitely generated groups, Mem. AMS, 58, Amer. Math. Soc., Providence, RI, 1985 | MR
[2] Platonov V.P., Rapinchuk A.S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR
[3] Richardson R.W., “Commuting varieties of semisimple Lie algebras and algebraic groups”, Compos. math., 38:3 (1979), 311–327 | MR | Zbl
[4] Sharomet A.A., “O mnogoobrazii par perestanovochnykh matrits neodnosvyaznoi algebraicheskoi gruppy”, XI Belorus. mat. konferentsiya, Tez. dokl., In-t matematiki NAN Belarusi, Minsk, 2012, 57–58
[5] Rapinchuk A.S., Benyash-Krivetz V.V., Chernousov V.I., “Representation varieties of the fundamental groups of compact orientable surfaces”, Isr. J. Math., 93 (1996), 29–71 | DOI | MR | Zbl
[6] Motskin T.S., Taussky O., “Pairs of matrices with property L. II”, Trans. Amer. Math. Soc., 80 (1955), 387–401 | MR
[7] Guralnick R., “A note on commuting pairs of matrices”, Linear Multilinear Algebra, 31:1–4 (1992), 71–75 | DOI | MR | Zbl
[8] Šivic K., “On varieties of commuting triples. III”, Linear Algebra Appl., 437:2 (2012), 393–460 | DOI | MR | Zbl