On representation varieties of free abelian groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263

Voir la notice de l'article provenant de la source Math-Net.Ru

The reducibility of the representation variety of a free abelian group of finite rank in a semisimple non-simply connected algebraic group is proved. Irreducible components of the representation variety of a free abelian group of rank $2$ in groups of type $A_n$ are described.
@article{TRSPY_2016_292_a14,
     author = {A. A. Sharomet},
     title = {On representation varieties of free abelian groups},
     journal = {Informatics and Automation},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/}
}
TY  - JOUR
AU  - A. A. Sharomet
TI  - On representation varieties of free abelian groups
JO  - Informatics and Automation
PY  - 2016
SP  - 255
EP  - 263
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/
LA  - ru
ID  - TRSPY_2016_292_a14
ER  - 
%0 Journal Article
%A A. A. Sharomet
%T On representation varieties of free abelian groups
%J Informatics and Automation
%D 2016
%P 255-263
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/
%G ru
%F TRSPY_2016_292_a14
A. A. Sharomet. On representation varieties of free abelian groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/