On representation varieties of free abelian groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263
Voir la notice de l'article provenant de la source Math-Net.Ru
The reducibility of the representation variety of a free abelian group of finite rank in a semisimple non-simply connected algebraic group is proved. Irreducible components of the representation variety of a free abelian group of rank $2$ in groups of type $A_n$ are described.
@article{TRSPY_2016_292_a14,
author = {A. A. Sharomet},
title = {On representation varieties of free abelian groups},
journal = {Informatics and Automation},
pages = {255--263},
publisher = {mathdoc},
volume = {292},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/}
}
A. A. Sharomet. On representation varieties of free abelian groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/