On representation varieties of free abelian groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

The reducibility of the representation variety of a free abelian group of finite rank in a semisimple non-simply connected algebraic group is proved. Irreducible components of the representation variety of a free abelian group of rank $2$ in groups of type $A_n$ are described.
@article{TRSPY_2016_292_a14,
     author = {A. A. Sharomet},
     title = {On representation varieties of free abelian groups},
     journal = {Informatics and Automation},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/}
}
TY  - JOUR
AU  - A. A. Sharomet
TI  - On representation varieties of free abelian groups
JO  - Informatics and Automation
PY  - 2016
SP  - 255
EP  - 263
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/
LA  - ru
ID  - TRSPY_2016_292_a14
ER  - 
%0 Journal Article
%A A. A. Sharomet
%T On representation varieties of free abelian groups
%J Informatics and Automation
%D 2016
%P 255-263
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/
%G ru
%F TRSPY_2016_292_a14
A. A. Sharomet. On representation varieties of free abelian groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 255-263. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a14/

[1] Lubotzky A., Magid A.R., Varieties of representations of finitely generated groups, Mem. AMS, 58, Amer. Math. Soc., Providence, RI, 1985 | MR

[2] Platonov V.P., Rapinchuk A.S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[3] Richardson R.W., “Commuting varieties of semisimple Lie algebras and algebraic groups”, Compos. math., 38:3 (1979), 311–327 | MR | Zbl

[4] Sharomet A.A., “O mnogoobrazii par perestanovochnykh matrits neodnosvyaznoi algebraicheskoi gruppy”, XI Belorus. mat. konferentsiya, Tez. dokl., In-t matematiki NAN Belarusi, Minsk, 2012, 57–58

[5] Rapinchuk A.S., Benyash-Krivetz V.V., Chernousov V.I., “Representation varieties of the fundamental groups of compact orientable surfaces”, Isr. J. Math., 93 (1996), 29–71 | DOI | MR | Zbl

[6] Motskin T.S., Taussky O., “Pairs of matrices with property L. II”, Trans. Amer. Math. Soc., 80 (1955), 387–401 | MR

[7] Guralnick R., “A note on commuting pairs of matrices”, Linear Multilinear Algebra, 31:1–4 (1992), 71–75 | DOI | MR | Zbl

[8] Šivic K., “On varieties of commuting triples. III”, Linear Algebra Appl., 437:2 (2012), 393–460 | DOI | MR | Zbl