Local nilpotency of the McCrimmon radical of a Jordan system
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the fact that absolute zero divisors in Jordan pairs become Lie sandwiches of the corresponding Tits–Kantor–Koecher Lie algebras, we prove local nilpotency of the McCrimmon radical of a Jordan system (algebra, triple system, or pair) over an arbitrary ring of scalars. As an application, we show that simple Jordan systems are always nondegenerate.
@article{TRSPY_2016_292_a0,
author = {Jos\'e A. Anquela and Teresa Cort\'es and Efim Zelmanov},
title = {Local nilpotency of the {McCrimmon} radical of a {Jordan} system},
journal = {Informatics and Automation},
pages = {7--15},
publisher = {mathdoc},
volume = {292},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/}
}
TY - JOUR AU - José A. Anquela AU - Teresa Cortés AU - Efim Zelmanov TI - Local nilpotency of the McCrimmon radical of a Jordan system JO - Informatics and Automation PY - 2016 SP - 7 EP - 15 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/ LA - en ID - TRSPY_2016_292_a0 ER -
José A. Anquela; Teresa Cortés; Efim Zelmanov. Local nilpotency of the McCrimmon radical of a Jordan system. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/