Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a0, author = {Jos\'e A. Anquela and Teresa Cort\'es and Efim Zelmanov}, title = {Local nilpotency of the {McCrimmon} radical of a {Jordan} system}, journal = {Informatics and Automation}, pages = {7--15}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/} }
TY - JOUR AU - José A. Anquela AU - Teresa Cortés AU - Efim Zelmanov TI - Local nilpotency of the McCrimmon radical of a Jordan system JO - Informatics and Automation PY - 2016 SP - 7 EP - 15 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/ LA - en ID - TRSPY_2016_292_a0 ER -
José A. Anquela; Teresa Cortés; Efim Zelmanov. Local nilpotency of the McCrimmon radical of a Jordan system. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/
[1] Anquela J.A., Cortés T., “Local and subquotient inheritance of simplicity in Jordan systems”, J. Algebra, 240 (2001), 680–704 | DOI | MR | Zbl
[2] Chanyshev A.D., “Regular words and a theorem on sandwich algebras”, Moscow Univ. Math. Bull., 45:5 (1990), 68–69 | MR | Zbl
[3] Humphreys J.E., Introduction to Lie algebras and representation theory, Grad. Texts Math., 9, Springer, New York, 1972 | DOI | MR | Zbl
[4] Jacobson N., Structure theory of Jordan algebras, Univ. Arkansas Lect. Notes Math., 5, University of Arkansas, Fayetteville, 1981 | MR | Zbl
[5] Kostrikin A., Around Burnside, Ergeb. Math. Grenzgeb. 3. Folge, 20, Springer, Berlin, 1990 | MR | Zbl
[6] Lewand R.E., McCrimmon K.M., “Macdonald's theorem for quadratic Jordan algebras”, Pac. J. Math., 35 (1970), 681–707 | DOI | MR
[7] Loos O., Jordan pairs, Lect. Notes Math., 460, Springer, Berlin, 1975 | MR | Zbl
[8] Martínez C., Zelmanov E., “Representation theory of Jordan superalgebras. I”, Trans. Amer. Math. Soc., 362 (2010), 815–846 | MR | Zbl
[9] Martínez C., Zelmanov E., “Irreducible representations of the exceptional Cheng–Kac superalgebra”, Trans. Amer. Math. Soc., 366 (2014), 5853–5876 | DOI | MR | Zbl
[10] McCrimmon K., “Solvability and nilpotence for quadratic Jordan algebras”, Scripta math., 29 (1973), 467–483 | MR | Zbl
[11] McCrimmon K., “Amitsur shrinkage of Jordan radicals”, Commun. Algebra, 12 (1984), 777–826 | DOI | MR | Zbl
[12] McCrimmon K., A taste of Jordan algebras, Universitext, Springer, New York, 2004 | MR | Zbl
[13] McCrimmon K., Zel'manov E., “The structure of strongly prime quadratic Jordan algebras”, Adv. Math., 69 (1988), 133–222 | DOI | MR | Zbl
[14] Meyberg K., Lectures on algebras and triple systems, Univ. Virginia, Charlottesville, 1972 | MR
[15] Zel'manov E.I., “Absolute zero divisors in Jordan pairs and Lie algebras”, Math. USSR, Sb., 40 (1981), 549–565 | DOI | MR | Zbl | Zbl
[16] Zel'manov E.I., “Absolute zero-divisors and algebraic Jordan algebras”, Sib. Math. J., 23 (1982), 841–854 | DOI | MR | Zbl
[17] Zel'manov E.I., “Prime Jordan algebras. II”, Sib. Math. J., 24 (1983), 73–85 | DOI | MR | Zbl
[18] Zel'manov E.I., “Primary Jordan triple systems. III”, Sib. Math. J., 26 (1985), 55–64 | DOI | MR | Zbl
[19] Zelmanov E., Nil rings and periodic groups, KMS Lect. Notes Math., Korean Math. Soc., Seoul, 1992 | MR | Zbl
[20] Zel'manov E.I., Kostrikin A.I., “A theorem on sandwich algebras”, Proc. Steklov Inst. Math., 183 (1991), 121–126 | MR | Zbl
[21] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings that are nearly associative, Acad. Press, New York, 1982 | MR | Zbl