Local nilpotency of the McCrimmon radical of a Jordan system
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the fact that absolute zero divisors in Jordan pairs become Lie sandwiches of the corresponding Tits–Kantor–Koecher Lie algebras, we prove local nilpotency of the McCrimmon radical of a Jordan system (algebra, triple system, or pair) over an arbitrary ring of scalars. As an application, we show that simple Jordan systems are always nondegenerate.
@article{TRSPY_2016_292_a0,
     author = {Jos\'e A. Anquela and Teresa Cort\'es and Efim Zelmanov},
     title = {Local nilpotency of the {McCrimmon} radical of a {Jordan} system},
     journal = {Informatics and Automation},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/}
}
TY  - JOUR
AU  - José A. Anquela
AU  - Teresa Cortés
AU  - Efim Zelmanov
TI  - Local nilpotency of the McCrimmon radical of a Jordan system
JO  - Informatics and Automation
PY  - 2016
SP  - 7
EP  - 15
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/
LA  - en
ID  - TRSPY_2016_292_a0
ER  - 
%0 Journal Article
%A José A. Anquela
%A Teresa Cortés
%A Efim Zelmanov
%T Local nilpotency of the McCrimmon radical of a Jordan system
%J Informatics and Automation
%D 2016
%P 7-15
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/
%G en
%F TRSPY_2016_292_a0
José A. Anquela; Teresa Cortés; Efim Zelmanov. Local nilpotency of the McCrimmon radical of a Jordan system. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/

[1] Anquela J.A., Cortés T., “Local and subquotient inheritance of simplicity in Jordan systems”, J. Algebra, 240 (2001), 680–704 | DOI | MR | Zbl

[2] Chanyshev A.D., “Regular words and a theorem on sandwich algebras”, Moscow Univ. Math. Bull., 45:5 (1990), 68–69 | MR | Zbl

[3] Humphreys J.E., Introduction to Lie algebras and representation theory, Grad. Texts Math., 9, Springer, New York, 1972 | DOI | MR | Zbl

[4] Jacobson N., Structure theory of Jordan algebras, Univ. Arkansas Lect. Notes Math., 5, University of Arkansas, Fayetteville, 1981 | MR | Zbl

[5] Kostrikin A., Around Burnside, Ergeb. Math. Grenzgeb. 3. Folge, 20, Springer, Berlin, 1990 | MR | Zbl

[6] Lewand R.E., McCrimmon K.M., “Macdonald's theorem for quadratic Jordan algebras”, Pac. J. Math., 35 (1970), 681–707 | DOI | MR

[7] Loos O., Jordan pairs, Lect. Notes Math., 460, Springer, Berlin, 1975 | MR | Zbl

[8] Martínez C., Zelmanov E., “Representation theory of Jordan superalgebras. I”, Trans. Amer. Math. Soc., 362 (2010), 815–846 | MR | Zbl

[9] Martínez C., Zelmanov E., “Irreducible representations of the exceptional Cheng–Kac superalgebra”, Trans. Amer. Math. Soc., 366 (2014), 5853–5876 | DOI | MR | Zbl

[10] McCrimmon K., “Solvability and nilpotence for quadratic Jordan algebras”, Scripta math., 29 (1973), 467–483 | MR | Zbl

[11] McCrimmon K., “Amitsur shrinkage of Jordan radicals”, Commun. Algebra, 12 (1984), 777–826 | DOI | MR | Zbl

[12] McCrimmon K., A taste of Jordan algebras, Universitext, Springer, New York, 2004 | MR | Zbl

[13] McCrimmon K., Zel'manov E., “The structure of strongly prime quadratic Jordan algebras”, Adv. Math., 69 (1988), 133–222 | DOI | MR | Zbl

[14] Meyberg K., Lectures on algebras and triple systems, Univ. Virginia, Charlottesville, 1972 | MR

[15] Zel'manov E.I., “Absolute zero divisors in Jordan pairs and Lie algebras”, Math. USSR, Sb., 40 (1981), 549–565 | DOI | MR | Zbl | Zbl

[16] Zel'manov E.I., “Absolute zero-divisors and algebraic Jordan algebras”, Sib. Math. J., 23 (1982), 841–854 | DOI | MR | Zbl

[17] Zel'manov E.I., “Prime Jordan algebras. II”, Sib. Math. J., 24 (1983), 73–85 | DOI | MR | Zbl

[18] Zel'manov E.I., “Primary Jordan triple systems. III”, Sib. Math. J., 26 (1985), 55–64 | DOI | MR | Zbl

[19] Zelmanov E., Nil rings and periodic groups, KMS Lect. Notes Math., Korean Math. Soc., Seoul, 1992 | MR | Zbl

[20] Zel'manov E.I., Kostrikin A.I., “A theorem on sandwich algebras”, Proc. Steklov Inst. Math., 183 (1991), 121–126 | MR | Zbl

[21] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings that are nearly associative, Acad. Press, New York, 1982 | MR | Zbl