Local nilpotency of the McCrimmon radical of a Jordan system
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the fact that absolute zero divisors in Jordan pairs become Lie sandwiches of the corresponding Tits–Kantor–Koecher Lie algebras, we prove local nilpotency of the McCrimmon radical of a Jordan system (algebra, triple system, or pair) over an arbitrary ring of scalars. As an application, we show that simple Jordan systems are always nondegenerate.
@article{TRSPY_2016_292_a0,
     author = {Jos\'e A. Anquela and Teresa Cort\'es and Efim Zelmanov},
     title = {Local nilpotency of the {McCrimmon} radical of a {Jordan} system},
     journal = {Informatics and Automation},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/}
}
TY  - JOUR
AU  - José A. Anquela
AU  - Teresa Cortés
AU  - Efim Zelmanov
TI  - Local nilpotency of the McCrimmon radical of a Jordan system
JO  - Informatics and Automation
PY  - 2016
SP  - 7
EP  - 15
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/
LA  - en
ID  - TRSPY_2016_292_a0
ER  - 
%0 Journal Article
%A José A. Anquela
%A Teresa Cortés
%A Efim Zelmanov
%T Local nilpotency of the McCrimmon radical of a Jordan system
%J Informatics and Automation
%D 2016
%P 7-15
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/
%G en
%F TRSPY_2016_292_a0
José A. Anquela; Teresa Cortés; Efim Zelmanov. Local nilpotency of the McCrimmon radical of a Jordan system. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a0/