Approximate solution to a time optimal boundary control problem for the wave equation
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 112-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Time optimal problems with two-sided boundary controls for the wave equation are considered in classes of strong generalized solutions. Various combinations of boundary conditions of the first, second, and third kinds are admitted in the statement. A noise-immune algorithm is proposed for the approximate calculation of the optimal time and the corresponding boundary controls. The approximate solutions are shown to converge under asymptotic refinement of the parameters of finite-dimensional approximation and a decrease in the error level in the definition of target functions.
@article{TRSPY_2015_291_a9,
     author = {D. A. Ivanov and M. M. Potapov},
     title = {Approximate solution to a time optimal boundary control problem for the wave equation},
     journal = {Informatics and Automation},
     pages = {112--127},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a9/}
}
TY  - JOUR
AU  - D. A. Ivanov
AU  - M. M. Potapov
TI  - Approximate solution to a time optimal boundary control problem for the wave equation
JO  - Informatics and Automation
PY  - 2015
SP  - 112
EP  - 127
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a9/
LA  - ru
ID  - TRSPY_2015_291_a9
ER  - 
%0 Journal Article
%A D. A. Ivanov
%A M. M. Potapov
%T Approximate solution to a time optimal boundary control problem for the wave equation
%J Informatics and Automation
%D 2015
%P 112-127
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a9/
%G ru
%F TRSPY_2015_291_a9
D. A. Ivanov; M. M. Potapov. Approximate solution to a time optimal boundary control problem for the wave equation. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 112-127. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a9/

[1] Potapov M.M., Ivanov D.A., “Zadachi dvustoronnego granichnogo upravleniya dlya volnovogo uravneniya na dokriticheskikh promezhutkakh v klassakh silnykh obobschennykh reshenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 192–202 | MR

[2] Ivanov D.A., Potapov M.M., “Nepreryvnaya obratimost operatora granichnogo upravleniya dlya volnovogo uravneniya na dokriticheskikh promezhutkakh v klassakh slabykh obobschennykh reshenii”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 2014, no. 4, 5–12 | Zbl

[3] Potapov M.M., Dryazhenkov A.A., “Optimizatsiya porogovogo momenta v neravenstve nablyudaemosti dlya volnovogo uravneniya s kraevym usloviem uprugogo zakrepleniya”, Tr. MIAN, 277 (2012), 215–229 | MR | Zbl

[4] Vasilev F.P., “Ob iteratsionnykh metodakh resheniya zadach bystrodeistviya, svyazannykh s parabolicheskimi uravneniyami”, ZhVMiMF, 10:4 (1970), 942–957 | Zbl

[5] Vasilev F.P., Ivanov R.P., “O priblizhennom reshenii zadachi bystrodeistviya v banakhovykh prostranstvakh pri nalichii ogranichenii na fazovye koordinaty”, ZhVMiMF, 11:2 (1971), 328–347 | MR

[6] Lasiecka I., Lions J.-L., Triggiani R., “Non homogeneous boundary value problems for second order hyperbolic operators”, J. math. pures appl. Sér. 9, 65 (1986), 149–192 | MR | Zbl

[7] Ilin V.A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:11 (2000), 1513–1528 | MR | Zbl

[8] Abdukarimov M.F., Kritskov L.V., “Zadacha granichnogo upravleniya dlya odnomernogo uravneniya Kleina–Gordona–Foka s peremennym koeffitsientom. Sluchai upravleniya smescheniyami na dvukh kontsakh”, Dif. uravneniya, 49:8 (2013), 1036–1046 | MR | Zbl

[9] Dryazhenkov A.A., “Neravenstvo nablyudaemosti dlya volnovogo uravneniya s usloviem uprugogo zakrepleniya v sluchae kriticheskogo intervala vremeni”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 2014, no. 3, 18–22 | MR | Zbl

[10] Potapov M.M., “Ustoichivyi metod resheniya lineinykh uravnenii s neravnomerno vozmuschennym operatorom”, DAN, 365:5 (1999), 596–598 | MR | Zbl

[11] Vasilev F.P., Kurzhanskii M.A., Potapov M.M., Razgulin A.V., Priblizhennoe reshenie dvoistvennykh zadach upravleniya i nablyudeniya, MAKS Press, M., 2010

[12] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002