On solving approach problems for control systems
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 276-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of making a control system in a finite-dimensional Euclidean space approach a compact set at a fixed instant of time. The technique presented in the paper for solving the approach problem is based on constructions involving solvability sets. To construct approximately the solvability set, we apply a backward (in time) procedure that involves storing controls selected during the construction of this set. We also give examples of simulation of approach problems for mechanical systems.
@article{TRSPY_2015_291_a20,
     author = {V. N. Ushakov and V. I. Ukhobotov and A. V. Ushakov and G. V. Parshikov},
     title = {On solving approach problems for control systems},
     journal = {Informatics and Automation},
     pages = {276--291},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a20/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - V. I. Ukhobotov
AU  - A. V. Ushakov
AU  - G. V. Parshikov
TI  - On solving approach problems for control systems
JO  - Informatics and Automation
PY  - 2015
SP  - 276
EP  - 291
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a20/
LA  - ru
ID  - TRSPY_2015_291_a20
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A V. I. Ukhobotov
%A A. V. Ushakov
%A G. V. Parshikov
%T On solving approach problems for control systems
%J Informatics and Automation
%D 2015
%P 276-291
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a20/
%G ru
%F TRSPY_2015_291_a20
V. N. Ushakov; V. I. Ukhobotov; A. V. Ushakov; G. V. Parshikov. On solving approach problems for control systems. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 276-291. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a20/

[1] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina: Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006

[2] Aseev S.M., “Gladkie approksimatsii differentsialnykh vklyuchenii i zadacha bystrodeistviya”, Tr. MIAN, 200 (1991), 27–34 | Zbl

[3] Blagodatskikh V.I., Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169 (1985), 194–252 | MR | Zbl

[4] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988 | MR

[5] Chernousko F.L., Melikyan A.A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978 | MR

[6] Filippova T.F., “A note on the evolution property of the assembly of viable solutions to a differential inclusion”, Comput. Math. Appl., 25:2 (1993), 115–121 | DOI | MR | Zbl

[7] Gusev M.I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:4 (2009), 82–94

[8] Khalil Kh.K., Nelineinye sistemy, In-t kompyut. issled., M.; Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2009

[9] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[10] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[11] Kryazhimskii A.V., “Chislovaya kodirovka diskretizovannykh upravlenii i approksimatsionnyi metricheskii kriterii razreshimosti igrovoi zadachi navedeniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 105–124

[12] Kurzhanskii A.B., “Alternirovannyi integral Pontryagina v teorii sinteza upravlenii”, Tr. MIAN, 224 (1999), 234–248 | MR

[13] Kurzhanskii A.B., Osipov Yu.S., “K upravleniyu lineinoi sistemoi obobschennymi vozdeistviyami”, Dif. uravneniya, 5:8 (1969), 1360–1370 | Zbl

[14] Lee E.B., Markus L., Foundations of optimal control theory, J. Wiley Sons, New York, 1967 | MR | Zbl

[15] Nikolskii M.S., “Ob alternirovannom integrale L.S. Pontryagina”, Mat. sb., 116:1 (1981), 136–144 | MR

[16] Osipov Yu.S., “Alternativa v differentsialno-raznostnoi igre”, DAN SSSR, 197:5 (1971), 1022–1025 | MR | Zbl

[17] Polovinkin E.S., “Stabilnost terminalnogo mnozhestva i optimalnost vremeni presledovaniya v differentsialnykh igrakh”, Dif. uravneniya, 20:3 (1984), 433–446 | MR | Zbl

[18] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[19] Pshenichnyi B.N., “Struktura differentsialnykh igr”, DAN SSSR, 184:2 (1969), 285–287

[20] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[21] Ukhobotov V.I., “Analiticheskaya skhema postroeniya stabilnykh mostov dlya operatorov programmnogo pogloscheniya s invariantnymi semeistvami mnozhestv”, Izv. In-ta matematiki i informatiki UdGU, 2005, no. 2, 23–34

[22] Ushakov A.V., “Ob odnom variante priblizhennogo postroeniya razreshayuschikh upravlenii v zadache o sblizhenii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2012, no. 4, 94–107 | Zbl

[23] Ushakov V.N., Lavrov N.G., Ushakov A.V., “Konstruirovanie reshenii v zadache o sblizhenii statsionarnoi upravlyaemoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 277–286 | MR

[24] Zelikin M.I., Optimalnoe upravlenie i variatsionnoe ischislenie, Izd-vo MGU, M., 1985 | MR