Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_291_a19, author = {N. N. Subbotina and T. B. Tokmantsev and E. A. Krupennikov}, title = {On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method}, journal = {Informatics and Automation}, pages = {266--275}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/} }
TY - JOUR AU - N. N. Subbotina AU - T. B. Tokmantsev AU - E. A. Krupennikov TI - On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method JO - Informatics and Automation PY - 2015 SP - 266 EP - 275 VL - 291 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/ LA - ru ID - TRSPY_2015_291_a19 ER -
%0 Journal Article %A N. N. Subbotina %A T. B. Tokmantsev %A E. A. Krupennikov %T On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method %J Informatics and Automation %D 2015 %P 266-275 %V 291 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/ %G ru %F TRSPY_2015_291_a19
N. N. Subbotina; T. B. Tokmantsev; E. A. Krupennikov. On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 266-275. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/
[1] Albrekht E.G., “Metodika postroeniya i identifikatsii matematicheskikh modelei makroekonomicheskikh protsessov”, Statya 5, Issledovano v Rossii: Elektron. zhurn., 2002, 54–86
[2] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl
[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR
[4] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR
[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR
[6] Krupennikov E.A., “K obosnovaniyu metoda resheniya zadachi rekonstruktsii dinamiki makroekonomicheskoi modeli”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 102–114
[7] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. tekhn. kibern., 1983, no. 2, 51–60 | MR
[8] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995 | MR | Zbl
[9] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR
[10] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[11] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., M.; Izhevsk, 2003
[12] Subbotina N.N., Kolpakova E.A., Tokmantsev T.B., Shagalova L.G, Metod kharakteristik dlya uravneniya Gamiltona–Yakobi–Bellmana, RIO UrO RAN, Ekaterinburg, 2013
[13] Subbotina N.N., Tokmantsev T.B., “Klassicheskie kharakteristiki uravneniya Bellmana v konstruktsiyakh setochnogo optimalnogo sinteza”, Tr. MIAN, 271 (2010), 259–277 | MR | Zbl
[14] Subbotina N.N., Tokmantsev T.B., “The method of characteristics in inverse problems of dynamics”, Univers. J. Control Autom., 1:1 (2013), 79–85
[15] Subbotina N.N., Tokmantsev T.B., “Issledovanie ustoichivosti resheniya obratnykh zadach dinamiki upravlyaemykh sistem po otnosheniyu k vozmuscheniyam vkhodnykh dannykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 218–233 | MR
[16] Subbotina N.N., Tokmantsev T.B., “Optimal synthesis to inverse problems of dynamics”, Proc. 19th IFAC World Congr., 2014, Int. Fed. Autom. Control, Laxenburg, 2014, 5866–5871
[17] Tikhonov A.N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[18] Tikhonov A.N., “O regulyarizatsii nekorrektno postavlennykh zadach”, DAN SSSR, 153:1 (1963), 49–52 | MR | Zbl