On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 266-275

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the substantiation of the negative discrepancy method for solving inverse problems of the dynamics of deterministic control systems that are nonlinear in state variables and linear in control. The problem statements include the known sampling history of trajectories measured inaccurately, with known error estimates. The investigation is based on the Pontryagin maximum principle. The results of simulation of an inverse problem for a macroeconomic model are presented.
@article{TRSPY_2015_291_a19,
     author = {N. N. Subbotina and T. B. Tokmantsev and E. A. Krupennikov},
     title = {On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method},
     journal = {Informatics and Automation},
     pages = {266--275},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - T. B. Tokmantsev
AU  - E. A. Krupennikov
TI  - On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method
JO  - Informatics and Automation
PY  - 2015
SP  - 266
EP  - 275
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/
LA  - ru
ID  - TRSPY_2015_291_a19
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A T. B. Tokmantsev
%A E. A. Krupennikov
%T On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method
%J Informatics and Automation
%D 2015
%P 266-275
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/
%G ru
%F TRSPY_2015_291_a19
N. N. Subbotina; T. B. Tokmantsev; E. A. Krupennikov. On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 266-275. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a19/