Differential inclusions with unbounded right-hand side and necessary optimality conditions
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 249-265

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the trajectories of a differential inclusion with unbounded measurable–pseudo-Lipschitz right-hand side that takes values in a separable Banach space and consider the problem of minimizing a functional over the set of trajectories of such a differential inclusion on an interval. We obtain necessary optimality conditions in the form of Euler–Lagrange differential inclusions for a problem with free right end.
@article{TRSPY_2015_291_a18,
     author = {E. S. Polovinkin},
     title = {Differential inclusions with unbounded right-hand side and necessary optimality conditions},
     journal = {Informatics and Automation},
     pages = {249--265},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - Differential inclusions with unbounded right-hand side and necessary optimality conditions
JO  - Informatics and Automation
PY  - 2015
SP  - 249
EP  - 265
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/
LA  - ru
ID  - TRSPY_2015_291_a18
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T Differential inclusions with unbounded right-hand side and necessary optimality conditions
%J Informatics and Automation
%D 2015
%P 249-265
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/
%G ru
%F TRSPY_2015_291_a18
E. S. Polovinkin. Differential inclusions with unbounded right-hand side and necessary optimality conditions. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 249-265. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/