Differential inclusions with unbounded right-hand side and necessary optimality conditions
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 249-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the trajectories of a differential inclusion with unbounded measurable–pseudo-Lipschitz right-hand side that takes values in a separable Banach space and consider the problem of minimizing a functional over the set of trajectories of such a differential inclusion on an interval. We obtain necessary optimality conditions in the form of Euler–Lagrange differential inclusions for a problem with free right end.
@article{TRSPY_2015_291_a18,
     author = {E. S. Polovinkin},
     title = {Differential inclusions with unbounded right-hand side and necessary optimality conditions},
     journal = {Informatics and Automation},
     pages = {249--265},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - Differential inclusions with unbounded right-hand side and necessary optimality conditions
JO  - Informatics and Automation
PY  - 2015
SP  - 249
EP  - 265
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/
LA  - ru
ID  - TRSPY_2015_291_a18
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T Differential inclusions with unbounded right-hand side and necessary optimality conditions
%J Informatics and Automation
%D 2015
%P 249-265
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/
%G ru
%F TRSPY_2015_291_a18
E. S. Polovinkin. Differential inclusions with unbounded right-hand side and necessary optimality conditions. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 249-265. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a18/

[1] Aubin J.-P., “Lipschitz behavior of solutions to convex minimization problems”, Math. Oper. Res., 9 (1984), 87–111 | DOI | MR | Zbl

[2] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[3] Filippov A.F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1967, no. 3, 16–26 | Zbl

[4] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[5] Ioffe A., “Existence and relaxation theorems for unbounded differential inclusions”, J. Convex Anal., 13:2 (2006), 353–362 | MR | Zbl

[6] Loewen P.D., Rockafellar R.T., “Optimal control of unbounded differential inclusions”, SIAM J. Control Optim., 32:2 (1994), 442–470 | DOI | MR | Zbl

[7] Polovinkin E.S., “The properties of continuity and differentiation of solution sets of Lipschitzean differential inclusions // Modeling, estimation and control of systems with uncertainty”, Prog. Syst. Control Theory, 10, Ed. by G.B. Di Masi, A. Gombani, A.B. Kurzhansky, Birkhäuser, Boston, 1991, 349–360 | MR

[8] Polovinkin E.S., “Necessary conditions for optimization problems with differential inclusions // Set-valued analysis and differential inclusions”, Prog. Syst. Control Theory, 16, Ed. by A.B. Kurzhanski, V.M. Veliov, Birkhäuser, Boston, 1993, 157–170 | MR | Zbl

[9] Polovinkin E.S., “Neobkhodimye usloviya v zadache optimizatsii s differentsialnym vklyucheniem”, Tr. MIAN, 211 (1995), 387–400 | MR | Zbl

[10] Polovinkin E.S., “Teorema suschestvovaniya reshenii differentsialnogo vklyucheniya s psevdolipshitsevoi pravoi chastyu”, Nelineinyi mir, 10:9 (2012), 571–578

[11] Polovinkin E.S., “O nekotorykh svoistvakh proizvodnykh mnogoznachnykh otobrazhenii”, Tr. MFTI, 4:4 (2012), 141–154 | MR

[12] Polovinkin E.S., “O vychislenii polyarnogo konusa k mnozhestvu reshenii differentsialnogo vklyucheniya”, Tr. MIAN, 278 (2012), 178–187 | MR | Zbl

[13] Polovinkin E.S., “Differentsialnye vklyucheniya s izmerimo-psevdolipshitsevoi pravoi chastyu”, Tr. MIAN, 283 (2013), 121–141 | Zbl

[14] Polovinkin E.S., “O slabom polyarnom konuse ko mnozhestvu reshenii differentsialnogo vklyucheniya s konicheskim grafikom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 238–246 | MR

[15] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007

[16] Polovinkin E.S., Smirnov G.V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Dif. uravneniya, 22:6 (1986), 944–954 | MR | Zbl

[17] Polovinkin E.S., Smirnov G.V., “O zadache bystrodeistviya dlya differentsialnykh vklyuchenii”, Dif. uravneniya, 22:8 (1986), 1351–1365 | MR | Zbl

[18] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961