Laurent phenomenon for Landau--Ginzburg models of complete intersections in Grassmannians
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 102-113

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1997 Batyrev, Ciocan-Fontanine, Kim, and van Straten suggested a construction of Landau–Ginzburg models for Fano complete intersections in Grassmannians similar to Givental's construction for complete intersections in smooth toric varieties. We show that for a Fano complete intersection in a Grassmannian the result of the above construction is birational to a complex torus. In other words, the complete intersections under consideration have very weak Landau–Ginzburg models.
@article{TRSPY_2015_290_a8,
     author = {V. V. Przyjalkowski and C. A. Shramov},
     title = {Laurent phenomenon for {Landau--Ginzburg} models of complete intersections in {Grassmannians}},
     journal = {Informatics and Automation},
     pages = {102--113},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a8/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
AU  - C. A. Shramov
TI  - Laurent phenomenon for Landau--Ginzburg models of complete intersections in Grassmannians
JO  - Informatics and Automation
PY  - 2015
SP  - 102
EP  - 113
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a8/
LA  - ru
ID  - TRSPY_2015_290_a8
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%A C. A. Shramov
%T Laurent phenomenon for Landau--Ginzburg models of complete intersections in Grassmannians
%J Informatics and Automation
%D 2015
%P 102-113
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a8/
%G ru
%F TRSPY_2015_290_a8
V. V. Przyjalkowski; C. A. Shramov. Laurent phenomenon for Landau--Ginzburg models of complete intersections in Grassmannians. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 102-113. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a8/