Rigorous results of phase transition theory in lattice boson models
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 335-343

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantum systems of particles obeying Bose statistics and moving in $d$-dimensional lattices are studied. The original Bose–Hubbard Hamiltonian is considered, together with model systems related to this Hamiltonian: the Bose–Hubbard model with exchange interaction of infinite radius and the Bose–Hubbard model with infinite interaction potential. Rigorous results concerning the proof of the existence of Bose condensation and a phase transition to the Mott insulator state in these systems are presented.
@article{TRSPY_2015_290_a27,
     author = {D. P. Sankovich},
     title = {Rigorous results of phase transition theory in lattice boson models},
     journal = {Informatics and Automation},
     pages = {335--343},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a27/}
}
TY  - JOUR
AU  - D. P. Sankovich
TI  - Rigorous results of phase transition theory in lattice boson models
JO  - Informatics and Automation
PY  - 2015
SP  - 335
EP  - 343
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a27/
LA  - ru
ID  - TRSPY_2015_290_a27
ER  - 
%0 Journal Article
%A D. P. Sankovich
%T Rigorous results of phase transition theory in lattice boson models
%J Informatics and Automation
%D 2015
%P 335-343
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a27/
%G ru
%F TRSPY_2015_290_a27
D. P. Sankovich. Rigorous results of phase transition theory in lattice boson models. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 335-343. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a27/