Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a27, author = {D. P. Sankovich}, title = {Rigorous results of phase transition theory in lattice boson models}, journal = {Informatics and Automation}, pages = {335--343}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a27/} }
D. P. Sankovich. Rigorous results of phase transition theory in lattice boson models. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 335-343. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a27/
[1] Ruelle D., Statistical mechanics: Rigorous results, W.A. Benjamin, New York, 1969 | MR | Zbl
[2] Simon B., The $P(\varphi )_2$ Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, NJ, 1974 | MR
[3] Jaksch D., Bruder C., Cirac J.I., Gardiner C.W., Zoller P., “Cold bosonic atoms in optical lattices”, Phys. Rev. Lett., 81 (1998), 3108–3111 | DOI
[4] Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I., “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms”, Nature, 415 (2002), 39–44 | DOI
[5] Jaksch D., Zoller P., “The cold atom Hubbard toolbox”, Ann. Phys., 315 (2005), 52–79 | DOI | Zbl
[6] Hubbard J., “Electron correlations in narrow energy bands”, Proc. R. Soc. London A, 276 (1963), 238–257 | DOI
[7] Matsubara T., Matsuda H., “A lattice model of liquid helium. I”, Prog. Theor. Phys., 16 (1956), 569–582 | DOI | Zbl
[8] Gersch H.A., Knollman G.C., “Quantum cell model for bosons”, Phys. Rev., 129 (1963), 959–967 | DOI | Zbl
[9] Fisher M.P.A., Weichman P.B., Grinstein G., Fisher D.S., “Boson localization and the superfluid–insulator transition”, Phys. Rev. B, 40 (1989), 546–570 | DOI
[10] Zwerger W., “Mott–Hubbard transition of cold atoms in optical lattices”, J. Optics B, 5:2 (2003), S9–S16 | DOI
[11] Bru J.-B., Dorlas T.C., “Exact solution of the infinite-range-hopping Bose–Hubbard model”, J. Stat. Phys., 113 (2003), 177–196 | DOI | MR | Zbl
[12] Bogolubov N.N., Jr., A method for studing model Hamiltonians: A minimax principle for problems in statistical physics, Pergamon, Oxford, 1972
[13] Ginibre J., “On the asymptotic exactness of the Bogoliubov approximation for many boson systems”, Commun. Math. Phys., 8 (1968), 26–51 | DOI | MR | Zbl
[14] Dyson F.J., Lieb E.H., Simon B., “Phase transitions in quantum spin systems with isotropic and nonisotropic interactions”, J. Stat. Phys., 18 (1978), 335–383 | DOI | MR
[15] Kennedy T., Lieb E.H., Shastry B.S., “The XY model has long-range order for all spins and all dimensions greater than one”, Phys. Rev. Lett., 61 (1988), 2582–2584 | DOI
[16] Fernández R., Fröhlich J., Ueltschi D., “Mott transition in lattice boson models”, Commun. Math. Phys., 266 (2006), 777–795 | DOI | MR | Zbl
[17] Aizenman M., Lieb E.H., Seiringer R., Solovej J.P., Yngvason J., “Bose–Einstein quantum phase transition in an optical lattice model”, Phys. Rev. A, 70 (2004), 023612 | DOI
[18] Kubo R., “Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12 (1957), 570–586 | DOI | MR
[19] Bogoljubow N.N., “Quasimittelwerte in Problemen der statistischen Mechanik. II”, Phys. Abh. Sowjetunion, 6:3 (1962), 229–284
[20] Naudts J., Verbeure A., Weder R., “Linear response theory and the KMS condition”, Commun. Math. Phys., 44 (1975), 87–99 | DOI | MR | Zbl
[21] Roepstorff G., “Bounds for a Bose condensate in dimensions $\nu \geq 3$”, J. Stat. Phys., 18 (1978), 191–206 | DOI | MR
[22] Haag R., Hugenholtz N.M., Winnink M., “On the equilibrium states in quantum statistical mechanics”, Commun. Math. Phys., 5 (1967), 215–236 | DOI | MR | Zbl
[23] Kastler D., Pool J.C.T., Poulsen E.T., “Quasi-unitary algebras attached to temperature states in statistical mechanics: A comment on the work of Haag, Hugenholtz and Winnink”, Commun. Math. Phys., 12 (1969), 175–192 | DOI | MR | Zbl
[24] Falk H., Bruch L.W., “Susceptibility and fluctuation”, Phys. Rev., 180 (1969), 442–444 | DOI
[25] Sankovich D.P., “Local Gaussian domination and Bose condensation in lattice boson model”, Phys. Lett. A, 377 (2013), 2905–2908 | DOI | Zbl
[26] Sankovich D.P., “Gaussova dominantnost i fazovye perekhody v sistemakh s nepreryvnoi simmetriei”, TMF, 79:3 (1989), 460–472 | MR