@article{TRSPY_2015_290_a26,
author = {Yu. V. Malykhin and S. A. Telyakovskii and N. N. Kholshchevnikova},
title = {Integrability of the sum of absolute values of blocks of the {Fourier{\textendash}Walsh} series for functions of bounded variation},
journal = {Informatics and Automation},
pages = {323--334},
year = {2015},
volume = {290},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/}
}
TY - JOUR AU - Yu. V. Malykhin AU - S. A. Telyakovskii AU - N. N. Kholshchevnikova TI - Integrability of the sum of absolute values of blocks of the Fourier–Walsh series for functions of bounded variation JO - Informatics and Automation PY - 2015 SP - 323 EP - 334 VL - 290 UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/ LA - ru ID - TRSPY_2015_290_a26 ER -
%0 Journal Article %A Yu. V. Malykhin %A S. A. Telyakovskii %A N. N. Kholshchevnikova %T Integrability of the sum of absolute values of blocks of the Fourier–Walsh series for functions of bounded variation %J Informatics and Automation %D 2015 %P 323-334 %V 290 %U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/ %G ru %F TRSPY_2015_290_a26
Yu. V. Malykhin; S. A. Telyakovskii; N. N. Kholshchevnikova. Integrability of the sum of absolute values of blocks of the Fourier–Walsh series for functions of bounded variation. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 323-334. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/
[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219 (1997), 378–386 | MR
[2] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl
[3] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl
[4] Trigub R.M., “A note on the paper of Telyakovski “Certain properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR
[5] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR
[6] Schipp F., Wade W.R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Akad. Kiadó, Budapest, 1990 | MR
[7] Balashov L.A., Rubinshtein A.I., “Ryady po sisteme Uolsha i ikh obobscheniya”, Matematicheskii analiz 1970, Itogi nauki. Ser. matematika, VINITI, M., 1971, 147–202
[8] Fine N.J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl
[9] Shneider A.A., “O skhodimosti ryadov Fure po funktsiyam Uolsha”, Mat. sb., 34:3 (1954), 441–472
[10] Lukomskii S.F., “Convergence of multiple Walsh series in measure and in $L$”, East J. Approx., 3:3 (1997), 101–116 | MR
[11] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 | MR