Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 323-334

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions on a sequence that splits the Fourier–Walsh series into blocks under which the series consisting of the absolute values of such blocks of the Fourier–Walsh series of any function of bounded variation converges to an integrable function. We also obtain estimates for the $L$-norms of the Walsh–Dirichlet kernels and their differences.
@article{TRSPY_2015_290_a26,
     author = {Yu. V. Malykhin and S. A. Telyakovskii and N. N. Kholshchevnikova},
     title = {Integrability of the sum of absolute values of blocks of the {Fourier--Walsh} series for functions of bounded variation},
     journal = {Informatics and Automation},
     pages = {323--334},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
AU  - S. A. Telyakovskii
AU  - N. N. Kholshchevnikova
TI  - Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
JO  - Informatics and Automation
PY  - 2015
SP  - 323
EP  - 334
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/
LA  - ru
ID  - TRSPY_2015_290_a26
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%A S. A. Telyakovskii
%A N. N. Kholshchevnikova
%T Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
%J Informatics and Automation
%D 2015
%P 323-334
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/
%G ru
%F TRSPY_2015_290_a26
Yu. V. Malykhin; S. A. Telyakovskii; N. N. Kholshchevnikova. Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 323-334. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a26/