Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a22, author = {E. M. Chirka}, title = {On the $\bar \partial $-problem with $L^2$-estimates on a {Riemann} surface}, journal = {Informatics and Automation}, pages = {280--292}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a22/} }
E. M. Chirka. On the $\bar \partial $-problem with $L^2$-estimates on a Riemann surface. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 280-292. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a22/
[1] Ganning R.C., Narasimhan R., “Immersion of open Riemann surfaces”, Math. Ann., 174 (1967), 103–108 | DOI | MR
[2] Hedenmalm H., On Hörmander's solution of the $\bar \partial $-equation, E-print, 2013, arXiv: 1311.2020 [math.AP]
[3] Hörmander L., Notions of convexity, Prog. Math., 127, Birkhäuser, Boston, MA, 1994 | MR | Zbl
[4] Napier T., Ramachandran M., An introduction to Riemann surfaces, Springer, New York, 2011 | MR | Zbl