On equilibrium problems related to the distribution of zeros of the Hermite--Pad\'e polynomials
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 272-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study two potential-theory equilibrium problems that arise naturally in the theory of the limit distribution of zeros of the Hermite–Padé polynomials. We analyze the relationship between these problems and prove that the equilibrium measure for one of the problems is the balayage of the equilibrium measure for the other problem.
@article{TRSPY_2015_290_a21,
     author = {V. I. Buslaev and S. P. Suetin},
     title = {On equilibrium problems related to the distribution of zeros of the {Hermite--Pad\'e} polynomials},
     journal = {Informatics and Automation},
     pages = {272--279},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a21/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - S. P. Suetin
TI  - On equilibrium problems related to the distribution of zeros of the Hermite--Pad\'e polynomials
JO  - Informatics and Automation
PY  - 2015
SP  - 272
EP  - 279
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a21/
LA  - ru
ID  - TRSPY_2015_290_a21
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A S. P. Suetin
%T On equilibrium problems related to the distribution of zeros of the Hermite--Pad\'e polynomials
%J Informatics and Automation
%D 2015
%P 272-279
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a21/
%G ru
%F TRSPY_2015_290_a21
V. I. Buslaev; S. P. Suetin. On equilibrium problems related to the distribution of zeros of the Hermite--Pad\'e polynomials. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 272-279. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a21/

[1] Aptekarev A.I., Tulyakov D.N., “Glavnyi chlen asimptotiki Plansherelya–Rotakha dlya reshenii rekurrentnykh sootnoshenii”, Mat. sb., 205:12 (2014), 17–40 | DOI | MR | Zbl

[2] Buslaev V.I., “O skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Mat. sb., 204:2 (2013), 39–72 | DOI | MR | Zbl

[3] Buslaev V.I., Martines-Finkelshtein A., Suetin S.P., “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, Tr. MIAN, 279 (2012), 31–58 | MR | Zbl

[4] Buslaev V.I., Suetin S.P., “O suschestvovanii kompaktov minimalnoi emkosti v zadachakh ratsionalnoi approksimatsii mnogoznachnykh analiticheskikh funktsii”, UMN, 69:1 (2014), 169–170 | DOI | MR | Zbl

[5] Buslaev V.I., Suetin S.P., On the existence of compacta of minimal capacity in the problems of rational approximation of multi-valued analytic functions, E-print, 2015, arXiv: 1505.06120 [math.CV]

[6] Delvo S., Lopes A., Lopes Lagomasino G., “Ob odnom semeistve sistem Nikishina s periodicheskimi rekurrentnymi koeffitsientami”, Mat. sb., 204:1 (2013), 47–78 | DOI | MR

[7] Gonchar A.A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matematiki, 1 (2003), 83–106 | DOI | MR

[8] Gonchar A.A., Rakhmanov E.A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN SSSR, 157 (1981), 31–48 | MR | Zbl

[9] Gonchar A.A., Rakhmanov E.A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Mat. sb., 125:1 (1984), 117–127 | MR

[10] Gonchar A.A., Rakhmanov E.A., “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl

[11] Gonchar A.A., Rakhmanov E.A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Mat. sb., 134:3 (1987), 306–352 | MR | Zbl

[12] Gonchar A.A., Rakhmanov E.A., Suetin S.P., “Approksimatsii Pade–Chebyshëva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6 (2011), 3–36 | DOI | MR | Zbl

[13] Ikonomov N.R., Kovacheva R.K., Suetin S.P., Some numerical results on the behavior of zeros of the Hermite–Padé polynomials, E-print, 2015

[14] Komlov A.V., Suetin S.P., “Asimptoticheskaya formula dlya polinomov, ortonormirovannykh otnositelno peremennogo vesa. II”, Mat. sb., 205:9 (2014), 121–144 | DOI | MR | Zbl

[15] Landkof N.S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[16] Martines-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnogo kompakta”, Mat. sb., 202:12 (2011), 113–136 | DOI | MR

[17] Nikishin E.M., “Ob asimptotike lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Matematika, 1986, no. 2, 33–41 | MR | Zbl

[18] Rakhmanov E.A., “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[19] Rakhmanov E.A., Suetin S.P., “Asimptotika polinomov Ermita–Pade I roda dlya pary funktsii, obrazuyuschikh sistemu Nikishina”, UMN, 67:5 (2012), 177–178 | DOI | MR | Zbl

[20] Rakhmanov E.A., Suetin S.P., “Raspredelenie nulei polinomov Ermita–Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Mat. sb., 204:9 (2013), 115–160 | DOI | MR | Zbl

[21] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl

[22] Stahl H., “Asymptotics of Hermite–Padé polynomials and related convergence results: A summary of results”, Nonlinear numerical methods and rational approximation, Math. Appl., 43, D. Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[23] Stahl H., “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl