Tangent space to Milnor $K$-groups of rings
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 34-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the tangent space to the $(n+1)$th Milnor $K$-group of a ring $R$ is isomorphic to the group of $n$th absolute Kähler differentials of $R$ when the ring $R$ contains $1/2$ and has sufficiently many invertible elements. More precisely, the latter condition means that $R$ is weakly $5$-fold stable in the sense of Morrow.
@article{TRSPY_2015_290_a2,
     author = {S. O. Gorchinskiy and D. V. Osipov},
     title = {Tangent space to {Milnor} $K$-groups of rings},
     journal = {Informatics and Automation},
     pages = {34--42},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a2/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
AU  - D. V. Osipov
TI  - Tangent space to Milnor $K$-groups of rings
JO  - Informatics and Automation
PY  - 2015
SP  - 34
EP  - 42
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a2/
LA  - ru
ID  - TRSPY_2015_290_a2
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%A D. V. Osipov
%T Tangent space to Milnor $K$-groups of rings
%J Informatics and Automation
%D 2015
%P 34-42
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a2/
%G ru
%F TRSPY_2015_290_a2
S. O. Gorchinskiy; D. V. Osipov. Tangent space to Milnor $K$-groups of rings. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 34-42. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a2/