Demonstration representation and tensor products of Clifford algebras
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 154-165

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the tensor product of any Clifford algebras is isomorphic to a single Clifford algebra over some commutative algebra. It is also proved that any complex or real Clifford algebra $\mathcal C\!\ell (p,q)$ can be represented as a tensor product of Clifford algebras of the second and first orders. A canonical form of such a representation is proposed.
@article{TRSPY_2015_290_a12,
     author = {N. G. Marchuk},
     title = {Demonstration representation and tensor products of {Clifford} algebras},
     journal = {Informatics and Automation},
     pages = {154--165},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a12/}
}
TY  - JOUR
AU  - N. G. Marchuk
TI  - Demonstration representation and tensor products of Clifford algebras
JO  - Informatics and Automation
PY  - 2015
SP  - 154
EP  - 165
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a12/
LA  - ru
ID  - TRSPY_2015_290_a12
ER  - 
%0 Journal Article
%A N. G. Marchuk
%T Demonstration representation and tensor products of Clifford algebras
%J Informatics and Automation
%D 2015
%P 154-165
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a12/
%G ru
%F TRSPY_2015_290_a12
N. G. Marchuk. Demonstration representation and tensor products of Clifford algebras. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 154-165. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a12/