Lorentz invariant vacuum solutions in general relativity
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 149-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

All Lorentz invariant solutions of vacuum Einstein's equations are found. It is proved that these solutions describe space–times of constant curvature.
@article{TRSPY_2015_290_a11,
     author = {M. O. Katanaev},
     title = {Lorentz invariant vacuum solutions in general relativity},
     journal = {Informatics and Automation},
     pages = {149--153},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a11/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Lorentz invariant vacuum solutions in general relativity
JO  - Informatics and Automation
PY  - 2015
SP  - 149
EP  - 153
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a11/
LA  - ru
ID  - TRSPY_2015_290_a11
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Lorentz invariant vacuum solutions in general relativity
%J Informatics and Automation
%D 2015
%P 149-153
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a11/
%G ru
%F TRSPY_2015_290_a11
M. O. Katanaev. Lorentz invariant vacuum solutions in general relativity. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 149-153. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a11/

[1] Kramer D., Stephani H., Herlt E., MacCallum M., Exact solutions of Einstein's field equations, VEB Dtsch. Verlag Wiss., Berlin, 1980 ; Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | Zbl | MR

[2] de Sitter W., “On Einstein's theory of gravitation, and its astronomical consequences. Second paper”, Mon. Not. R. Astron. Soc., 77 (1916), 155–184 | DOI

[3] de Sitter W., “On Einstein's theory of gravitation, and its astronomical consequences. Third paper”, Mon. Not. R. Astron. Soc., 78 (1917), 3–28 | DOI

[4] Fok V.A., Teoriya prostranstva, vremeni i tyagoteniya, 2-e izd., Fizmatgiz, M., 1961

[5] Wolf J.A., Spaces of constant curvature, Univ. California, Berkeley, CA, 1972 ; Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR | MR