Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_290_a11, author = {M. O. Katanaev}, title = {Lorentz invariant vacuum solutions in general relativity}, journal = {Informatics and Automation}, pages = {149--153}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a11/} }
M. O. Katanaev. Lorentz invariant vacuum solutions in general relativity. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 149-153. http://geodesic.mathdoc.fr/item/TRSPY_2015_290_a11/
[1] Kramer D., Stephani H., Herlt E., MacCallum M., Exact solutions of Einstein's field equations, VEB Dtsch. Verlag Wiss., Berlin, 1980 ; Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | Zbl | MR
[2] de Sitter W., “On Einstein's theory of gravitation, and its astronomical consequences. Second paper”, Mon. Not. R. Astron. Soc., 77 (1916), 155–184 | DOI
[3] de Sitter W., “On Einstein's theory of gravitation, and its astronomical consequences. Third paper”, Mon. Not. R. Astron. Soc., 78 (1917), 3–28 | DOI
[4] Fok V.A., Teoriya prostranstva, vremeni i tyagoteniya, 2-e izd., Fizmatgiz, M., 1961
[5] Wolf J.A., Spaces of constant curvature, Univ. California, Berkeley, CA, 1972 ; Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR | MR