Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_289_a9, author = {A. G. Kulikovskii and A. P. Chugainova}, title = {Shock waves in elastoplastic media with the structure defined by the stress relaxation process}, journal = {Informatics and Automation}, pages = {178--194}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/} }
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Shock waves in elastoplastic media with the structure defined by the stress relaxation process JO - Informatics and Automation PY - 2015 SP - 178 EP - 194 VL - 289 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/ LA - ru ID - TRSPY_2015_289_a9 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Shock waves in elastoplastic media with the structure defined by the stress relaxation process %J Informatics and Automation %D 2015 %P 178-194 %V 289 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/ %G ru %F TRSPY_2015_289_a9
A. G. Kulikovskii; A. P. Chugainova. Shock waves in elastoplastic media with the structure defined by the stress relaxation process. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 178-194. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/
[1] Sadovskii V. M., Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Nauka, M., 1997 | MR
[2] Novatskii V. K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978
[3] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Ucheb. posobie dlya fiz. i mat. spets. vuzov, Univ. ser., 4, Nauch. kn., Novosibirsk, 1998
[4] Sadovskii V. M., “Uprugoplasticheskie volny silnogo razryva v lineino uprochnyayuschikhsya sredakh”, Izv. RAN. Mekhanika tverdogo tela, 1997, no. 6, 104–111
[5] Sadovskii V. M., “K teorii udarnykh voln v szhimaemykh plasticheskikh sredakh”, Izv. RAN. Mekhanika tverdogo tela, 2001, no. 5, 87–95
[6] Bykovtsev G. I., Kretova L. D., “O rasprostranenii udarnykh voln v uprugoplasticheskikh sredakh”, PMM, 36:1 (1972), 106–116 | Zbl
[7] Druyanov B. A., “Obobschennye resheniya v teorii plastichnosti”, PMM, 50:3 (1986), 483–489 | MR | Zbl
[8] Kukudzhanov V. N., “Nelineinye volny v uprugoplasticheskikh sredakh”, Volnovaya dinamika mashin, eds. K. V. Frolov, G. K. Sorokin, Nauka, M., 1991, 126–140
[9] Kamenyarzh Ya. A., “O nekotorykh svoistvakh uravnenii modeli svyazannoi termoplastichnosti”, PMM, 36:6 (1972), 1100–1107
[10] Druyanov B. A., Svyatova E. A., “Zadacha o strukture razryva v uprochnyayuscheisya plasticheskoi srede”, PMM, 51:6 (1987), 1047–1049 | Zbl
[11] Sadovskii V. M., “K issledovaniyu struktury poperechnykh udarnykh voln konechnoi amplitudy v plasticheskoi srede”, Izv. RAN. Mekhanika tverdogo tela, 2003, no. 6, 40–49
[12] Kulikovskii A. G., Chugainova A. P., “Ob oprokidyvanii voln Rimana v uprugoplasticheskikh sredakh s uprochneniem”, PMM, 77:4 (2013), 486–500 | MR
[13] Balashov D. B., “O prostykh volnakh uravnenii Prandtlya–Reissa”, PMM, 56:1 (1992), 124–133 | MR | Zbl
[14] Mandel Zh., “Plasticheskie volny v neogranichennoi trekhmernoi srede”, Mekhanika: Period. cb. perev. inostr. statei, 5, Mir, M., 1963, 119–141
[15] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl
[16] Kulikovskii A. G., “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami. Volny rekombinatsii v magnitnoi gidrodinamike”, PMM, 32:6 (1968), 1125–1131
[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, 2-e izd., Fizmatlit, M., 2012
[18] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR | Zbl