Shock waves in elastoplastic media with the structure defined by the stress relaxation process
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 178-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study nonlinear waves in a Maxwell medium in which residual strains and hardening occur. The properties of the medium are defined so that for slow processes with characteristic times much greater than the stress relaxation time, the medium behaves as an elastoplastic medium. We analyze continuous travelling waves in the form of smoothed steps regarded as discontinuity structures in an elastoplastic medium and demonstrate the dependence of relations at discontinuities on the definition of the stress relaxation process in the discontinuity structure.
@article{TRSPY_2015_289_a9,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {Shock waves in elastoplastic media with the structure defined by the stress relaxation process},
     journal = {Informatics and Automation},
     pages = {178--194},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - Shock waves in elastoplastic media with the structure defined by the stress relaxation process
JO  - Informatics and Automation
PY  - 2015
SP  - 178
EP  - 194
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/
LA  - ru
ID  - TRSPY_2015_289_a9
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T Shock waves in elastoplastic media with the structure defined by the stress relaxation process
%J Informatics and Automation
%D 2015
%P 178-194
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/
%G ru
%F TRSPY_2015_289_a9
A. G. Kulikovskii; A. P. Chugainova. Shock waves in elastoplastic media with the structure defined by the stress relaxation process. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 178-194. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a9/

[1] Sadovskii V. M., Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Nauka, M., 1997 | MR

[2] Novatskii V. K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978

[3] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Ucheb. posobie dlya fiz. i mat. spets. vuzov, Univ. ser., 4, Nauch. kn., Novosibirsk, 1998

[4] Sadovskii V. M., “Uprugoplasticheskie volny silnogo razryva v lineino uprochnyayuschikhsya sredakh”, Izv. RAN. Mekhanika tverdogo tela, 1997, no. 6, 104–111

[5] Sadovskii V. M., “K teorii udarnykh voln v szhimaemykh plasticheskikh sredakh”, Izv. RAN. Mekhanika tverdogo tela, 2001, no. 5, 87–95

[6] Bykovtsev G. I., Kretova L. D., “O rasprostranenii udarnykh voln v uprugoplasticheskikh sredakh”, PMM, 36:1 (1972), 106–116 | Zbl

[7] Druyanov B. A., “Obobschennye resheniya v teorii plastichnosti”, PMM, 50:3 (1986), 483–489 | MR | Zbl

[8] Kukudzhanov V. N., “Nelineinye volny v uprugoplasticheskikh sredakh”, Volnovaya dinamika mashin, eds. K. V. Frolov, G. K. Sorokin, Nauka, M., 1991, 126–140

[9] Kamenyarzh Ya. A., “O nekotorykh svoistvakh uravnenii modeli svyazannoi termoplastichnosti”, PMM, 36:6 (1972), 1100–1107

[10] Druyanov B. A., Svyatova E. A., “Zadacha o strukture razryva v uprochnyayuscheisya plasticheskoi srede”, PMM, 51:6 (1987), 1047–1049 | Zbl

[11] Sadovskii V. M., “K issledovaniyu struktury poperechnykh udarnykh voln konechnoi amplitudy v plasticheskoi srede”, Izv. RAN. Mekhanika tverdogo tela, 2003, no. 6, 40–49

[12] Kulikovskii A. G., Chugainova A. P., “Ob oprokidyvanii voln Rimana v uprugoplasticheskikh sredakh s uprochneniem”, PMM, 77:4 (2013), 486–500 | MR

[13] Balashov D. B., “O prostykh volnakh uravnenii Prandtlya–Reissa”, PMM, 56:1 (1992), 124–133 | MR | Zbl

[14] Mandel Zh., “Plasticheskie volny v neogranichennoi trekhmernoi srede”, Mekhanika: Period. cb. perev. inostr. statei, 5, Mir, M., 1963, 119–141

[15] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl

[16] Kulikovskii A. G., “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami. Volny rekombinatsii v magnitnoi gidrodinamike”, PMM, 32:6 (1968), 1125–1131

[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, 2-e izd., Fizmatlit, M., 2012

[18] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR | Zbl