V.A.~Steklov's work on equations of mathematical physics and development of his results in this field
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 145-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an extended account of the author's talk at the International Conference “Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics” dedicated to the 150th anniversary of Vladimir Andreevich Steklov. Steklov's main studies on the solvability of boundary value problems for equations of mathematical physics are briefly described, and the further development of this field of research is surveyed. The main attention is focused on the statements of the Dirichlet problem and the conditions on the domain and given functions under which solvability theorems are valid.
@article{TRSPY_2015_289_a7,
     author = {A. K. Gushchin},
     title = {V.A.~Steklov's work on equations of mathematical physics and development of his results in this field},
     journal = {Informatics and Automation},
     pages = {145--162},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a7/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - V.A.~Steklov's work on equations of mathematical physics and development of his results in this field
JO  - Informatics and Automation
PY  - 2015
SP  - 145
EP  - 162
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a7/
LA  - ru
ID  - TRSPY_2015_289_a7
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T V.A.~Steklov's work on equations of mathematical physics and development of his results in this field
%J Informatics and Automation
%D 2015
%P 145-162
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a7/
%G ru
%F TRSPY_2015_289_a7
A. K. Gushchin. V.A.~Steklov's work on equations of mathematical physics and development of his results in this field. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 145-162. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a7/

[1] Alkhutov Yu. A., “$L_p$-otsenki resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 189:1 (1998), 3–20 | DOI | MR | Zbl

[2] Alkhutov Yu. A., Kondratev V. A., “Razreshimost zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v vypukloi oblasti”, Dif. uravneniya, 28:5 (1992), 806–818 | MR

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[4] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[5] Carleson L., “Interpolations by bounded analytic functions and the corona problem”, Ann. Math. Ser. 2, 76 (1962), 547–559 | DOI | MR | Zbl

[6] De Giorgi E., “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. Ser. 3, 3 (1957), 25–43 | MR | Zbl

[7] Dumanyan V. Zh., “O razreshimosti zadachi Dirikhle dlya obschego ellipticheskogo uravneniya vtorogo poryadka”, Mat. sb., 202:7 (2011), 75–94 | DOI | MR | Zbl

[8] Fourier J., Théorie analytique de la chaleur, Firmin Didot Père et Fils, Paris, 1822

[9] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer, Berlin, 1983 ; Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl | MR

[10] Giraud G., “Sur le problème de Dirichlet généralisé (deuxième mémoire)”, Ann. sci. Éc. Norm. Super. Sér. 3, 46 (1929), 131–245 | MR | Zbl

[11] Giraud G., “Sur certains problèmes non linéaires de Neumann et sur certains non linéaires mixtes”, Ann. sci. Éc. Norm. Super. Sér. 3, 49 (1932), 1–104 | MR | Zbl

[12] Giraud G., “Sur certains problèmes non linéaires de Neumann et sur certains non linéaires mixtes (suite)”, Ann. sci. Éc. Norm. Super. Sér. 3, 49 (1932), 245–309 | MR | Zbl

[13] Guschin A. K., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Mat. sb., 137(179):1 (1988), 19–64 | MR | Zbl

[14] Guschin A. K., “O vnutrennei gladkosti reshenii ellipticheskikh uravnenii vtorogo poryadka”, Sib. mat. zhurn., 46:5 (2005), 1036–1052 | MR | Zbl

[15] Guschin A. K., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka s granichnoi funktsiei iz $L_p$”, Mat. sb., 203:1 (2012), 3–30 | DOI | MR | Zbl

[16] Guschin A. K., “$L_p$-otsenki resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, TMF, 174:2 (2013), 243–255 | DOI | MR | Zbl

[17] Guschin A. K., Mikhailov V. P., “O suschestvovanii granichnykh znachenii reshenii ellipticheskogo uravneniya”, Mat. sb., 182:6 (1991), 787–810 | MR | Zbl

[18] Gyunter N. M., Teoriya potentsiala i ee primeneniya k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, M., 1953 | MR

[19] Hilbert D., “Über das Dirichletsche Prinzip”, Jahresber. Dtsch. Math.-Ver., 8 (1900), 184–188 | Zbl

[20] Hopf E., “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptichen Typus”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1927 (1927), 147–152 | Zbl

[21] Hopf E., “Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung”, Math. Z., 34 (1932), 194–233 | DOI | MR

[22] Hölder O., Beiträge zur Potentialtheorie, Inaugural-Diss., Univ. Tübingen, 1882

[23] Hörmander L., “$L^p$ estimates for (pluri-)subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl

[24] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | MR | Zbl

[25] Kondrashov V. I., “O nekotorykh svoistvakh funktsii iz prostranstva $L_p^\nu$”, DAN SSSR, 48:8 (1945), 563–566

[26] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi–3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 32, VINITI, M., 1988, 99–215 | MR | Zbl

[27] Korn A., Lehrbuch der Potentialtheorie. Allgemeine Theorie des Potentials und der Potentialfunctionen im Raume, Ferd. Dümmler, Berlin, 1899 | Zbl

[28] Korn A., Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abwiechen, Abh. K. Preuss. Akad. Wiss. Phys.-Math. Kl., Anhang 2, Königl. Akad. Wiss., Berlin, 1909

[29] Korn A., “Zwei Anwendungen der Methode der sukzessiven Annäherungen”, Schwarz-Festschrift, Springer, Berlin, 1914, 215–229

[30] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[31] Lebesgue H., “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl

[32] Liapounoff A., “Sur certaines questions qui se rattachent au problème de Dirichlet”, J. math. pures appl. Sér. 5, 4 (1898), 241–311 ; Lyapunov A. M., “O nekotorykh voprosakh, svyazannykh s zadachei Dirikhle”, Izbrannye trudy, Izd-vo AN SSSR, L., 1948, 97–178 | Zbl | MR

[33] Lions Zh.-L., Madzhenis E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[34] Littlewood J. E., Paley R. E. A. C., “Theorems on Fourier series and power series”, J. Lond. Math. Soc., 6 (1931), 230–233 | DOI | MR | Zbl

[35] Littlewood J. E., Paley R. E. A. C., “Theorems on Fourier series and power series. II”, Proc. Lond. Math. Soc. Ser. 2, 42 (1936), 52–89 ; “III”, Proc. Lond. Math. Soc. Ser. 2, 43 (1937), 105–126 | MR | Zbl

[36] Lyusternik L. A., “Über einige Anwendungen der direkten Methoden in Variationsrechnung”, Mat. sb., 33:2 (1926), 173–201 | Zbl

[37] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[38] Mikhailov V. P., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Dif. uravneniya, 12:10 (1976), 1877–1891 | MR

[39] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[40] Mikhailov V. P., Guschin A. K., Dopolnitelnye glavy kursa “Uravneniya matematicheskoi fiziki”, Lekts. kursy NOTs, 7, MIAN, M., 2007 | DOI | Zbl

[41] Moser J., “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Commun. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[42] Nash J. F., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[43] Nechas I., “O resheniyakh ellipticheskikh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka s neogranichennym integralom Dirikhle”, Chekhoslov. mat. zhurn., 10 (1960), 283–298

[44] Oleinik O. A., “O zadache Dirikhle dlya uravnenii ellipticheskogo tipa”, Mat. sb., 24(66):1 (1949), 3–14 | MR | Zbl

[45] Perron O., “Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$”, Math. Z., 18 (1923), 42–54 | DOI | MR | Zbl

[46] Petrovskii I. G., “Novoe dokazatelstvo suschestvovaniya resheniya zadachi Dirikhle metodom konechnykh raznostei”, UMN, 1941, no. 8, 161–170 | MR | Zbl

[47] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gostekhizdat, M., 1953

[48] Poincaré H., “Sur les équations aux dérivées partielles de la physique mathématique”, Amer. J. Math., 12 (1890), 211–294 | DOI | MR

[49] Poincaré H., “La méthode de Neumann et le problème de Dirichlet”, Acta math., 20 (1896), 59–142 | DOI | MR | Zbl

[50] Privalov I. I., Integral Cauchy, Saratov, 1919

[51] Rellich F., “Ein Satz über mittlere Konvergenz”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1930 (1930), 30–35 | Zbl

[52] Riesz F., “Über die Randwerte einer analytischen Funktion”, Math. Z., 18 (1923), 87–95 | DOI | MR | Zbl

[53] Robin G., “Distribution de l'électricité sur une surface fermée convexe”, C. r. Acad. sci. Paris, 104 (1887), 1834–1836

[54] Schauder J., “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Z., 38 (1934), 257–282 | DOI | MR | Zbl

[55] Schauder J., “Numerische Abschätzungen in elliptischen linearen Differentialgleichungen”, Stud. math., 5 (1934), 34–42 | Zbl

[56] Seeley R. T., “Singular integrals and boundary value problems”, Amer. J. Math., 88 (1966), 781–809 | DOI | MR | Zbl

[57] Sobolev S. L., “O nekotorykh otsenkakh, otnosyaschikhsya k semeistvam funktsii, imeyuschikh proizvodnye, integriruemye s kvadratom”, DAN SSSR, 1:7 (1936), 267–270

[58] Sobolev S. L., “Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales”, Mat. sb., 1(43):1 (1936), 39–72 | Zbl

[59] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Mat. sb., 4(46):3 (1938), 471–497 | Zbl

[60] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[61] Steklov V. A., “K voprosu o suschestvovanii konechnoi i nepreryvnoi vnutri dannoi oblasti funktsii koordinat, udovletvoryayuschei uravneniyu Laplasa, pri dannykh znacheniyakh ee normalnoi proizvodnoi na poverkhnosti, ogranichivayuschei oblast”, Soobsch. Kharkov. mat. o-va. Ser. 2, 5:5–6 (1897), 255–286

[62] Stekloff W., “Sur les problèmes fondamentaux de la physique mathématique”, C. r. Acad. sci., 128 (1899), 588–591 | Zbl

[63] Stekloff W., “Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique”, Ann. fac. sci. Toulouse. Sér. 2, 2 (1900), 207–272 | DOI | MR | Zbl

[64] Stekloff W., “Mémoire sur les fonctions harmoniques de M. H. Poincaré”, Ann. fac. sci. Toulouse. Sér. 2, 2 (1900), 273–303 | DOI | MR | Zbl

[65] Stekloff W., “Théorie générale des fonctions fondamentales”, Ann. fac. sci. Toulouse. Sér. 2, 6 (1904), 351–475 | DOI | MR | Zbl

[66] Stekloff W., “Sur la condition de fermeture des systèmes de fonctions orthogonales”, C. r. Acad. sci., 151 (1910), 1116–1119

[67] Stekloff W., Sur la théorie de fermeture des systemes des fonctions orthogonales dépendant d'un nombre quelconque des variables, Zap. Imper. AN fiz.-mat. otd. Ser. 8, 30, no. 4, Imper. AN, SPb., 1911

[68] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Ch. 1, AN, Petrograd, 1922; Ч. 2, 1923

[69] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, 2-e izd., ed. V. S. Vladimirov, Nauka, M., 1983 | MR

[70] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[71] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[72] Vladimirov V. S., Markush I. I., Vladimir Andreevich Steklov – uchenyi i organizator nauki, Nauka, M., 1981 | MR

[73] Wiener N., “The Dirichlet problem”, J. Math. Phys., 3 (1924), 127–146 | Zbl

[74] Zaremba S., “Sur la théorie de l'équation de Laplace et les méthodes de Neumann et de Robin”, Bull. Acad. sci. Cracovie, 1901, 171–189 | Zbl