Embedding of a weighted Sobolev space and properties of the domain
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 107-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the embedding $W_{p,v}^s(G)\subset L_{q,w}(G)$ for a weighted Sobolev space defined on an irregular domain $G$ in the case of the limiting exponent when the parameters satisfy certain relations that depend on the geometric properties of the domain $G$.
@article{TRSPY_2015_289_a5,
     author = {O. V. Besov},
     title = {Embedding of a weighted {Sobolev} space and properties of the domain},
     journal = {Informatics and Automation},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a5/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Embedding of a weighted Sobolev space and properties of the domain
JO  - Informatics and Automation
PY  - 2015
SP  - 107
EP  - 114
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a5/
LA  - ru
ID  - TRSPY_2015_289_a5
ER  - 
%0 Journal Article
%A O. V. Besov
%T Embedding of a weighted Sobolev space and properties of the domain
%J Informatics and Automation
%D 2015
%P 107-114
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a5/
%G ru
%F TRSPY_2015_289_a5
O. V. Besov. Embedding of a weighted Sobolev space and properties of the domain. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 107-114. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a5/

[1] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl

[2] Besov O. V., “Vlozhenie prostranstva Soboleva i svoistva oblasti”, Mat. zametki, 96:3 (2014), 343–349 | DOI

[3] Besov O. V., “Vlozhenie vesovogo prostranstva Soboleva i svoistva oblasti”, DAN, 459:6 (2014), 663–666

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[5] Gabidzashvili M. A., “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbil. mat. in-ta, 82, 1986, 25–36 | MR | Zbl

[6] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[7] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwend., 19:2 (2000), 369–380 | DOI | MR | Zbl

[8] Kokilashvili V. M., Gabidzashvili M. A., “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i maksimalnykh funktsii”, DAN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl

[9] Labutin D. A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227, 1999, 170–179 | MR | Zbl

[10] Labutin D. A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN, 232, 2001, 218–222 | MR | Zbl

[11] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[12] Mazya V. G., Poborchii S. V., “Teoremy vlozheniya prostranstv Soboleva v oblasti s pikom i v gëlderovoi oblasti”, Algebra i analiz, 18:4 (2006), 95–126 | MR | Zbl

[13] Reshetnyak Yu. G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[14] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[15] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[16] Trushin B. V., “Teoremy vlozheniya Soboleva dlya nekotorogo klassa anizotropnykh neregulyarnykh oblastei”, Tr. MIAN, 260, 2008, 297–319 | MR | Zbl

[17] Trushin B. V., “Nepreryvnost vlozhenii vesovykh prostranstv Soboleva v prostranstva Lebega na anizotropno neregulyarnykh oblastyakh”, Tr. MIAN, 269, 2010, 271–289 | MR | Zbl