New estimates of odd exponents of infinite Burnside groups
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 41-82

Voir la notice de l'article provenant de la source Math-Net.Ru

This article consists of two parts. The first part presents a detailed history of the long-term joint work (1960–1968) of the author and P.S. Novikov on the proof of the infiniteness of the free Burnside groups $\mathbf {B}(m,n)$ for odd periods $n\ge 4381$ and $m>1$ generators (Sections 1 and 2). In Sections 3–10 we survey several significant results obtained by the author and his successors using the Novikov–Adian theory and its various modifications. In the second part (Sections 11–15) we outline a new modification of the Novikov–Adian theory. The new modification allows us to decrease to $n \ge 101$ the lower bound on the odd periods $n$ for which one can prove the infiniteness of the free periodic groups $\mathbf {B}(m,n)$. We plan to publish a full proof of this new result in the journal Russian Mathematical Surveys.
@article{TRSPY_2015_289_a3,
     author = {S. I. Adian},
     title = {New estimates of odd exponents of infinite {Burnside} groups},
     journal = {Informatics and Automation},
     pages = {41--82},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/}
}
TY  - JOUR
AU  - S. I. Adian
TI  - New estimates of odd exponents of infinite Burnside groups
JO  - Informatics and Automation
PY  - 2015
SP  - 41
EP  - 82
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/
LA  - ru
ID  - TRSPY_2015_289_a3
ER  - 
%0 Journal Article
%A S. I. Adian
%T New estimates of odd exponents of infinite Burnside groups
%J Informatics and Automation
%D 2015
%P 41-82
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/
%G ru
%F TRSPY_2015_289_a3
S. I. Adian. New estimates of odd exponents of infinite Burnside groups. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 41-82. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/