New estimates of odd exponents of infinite Burnside groups
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 41-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article consists of two parts. The first part presents a detailed history of the long-term joint work (1960–1968) of the author and P.S. Novikov on the proof of the infiniteness of the free Burnside groups $\mathbf {B}(m,n)$ for odd periods $n\ge 4381$ and $m>1$ generators (Sections 1 and 2). In Sections 3–10 we survey several significant results obtained by the author and his successors using the Novikov–Adian theory and its various modifications. In the second part (Sections 11–15) we outline a new modification of the Novikov–Adian theory. The new modification allows us to decrease to $n \ge 101$ the lower bound on the odd periods $n$ for which one can prove the infiniteness of the free periodic groups $\mathbf {B}(m,n)$. We plan to publish a full proof of this new result in the journal Russian Mathematical Surveys.
@article{TRSPY_2015_289_a3,
     author = {S. I. Adian},
     title = {New estimates of odd exponents of infinite {Burnside} groups},
     journal = {Informatics and Automation},
     pages = {41--82},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/}
}
TY  - JOUR
AU  - S. I. Adian
TI  - New estimates of odd exponents of infinite Burnside groups
JO  - Informatics and Automation
PY  - 2015
SP  - 41
EP  - 82
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/
LA  - ru
ID  - TRSPY_2015_289_a3
ER  - 
%0 Journal Article
%A S. I. Adian
%T New estimates of odd exponents of infinite Burnside groups
%J Informatics and Automation
%D 2015
%P 41-82
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/
%G ru
%F TRSPY_2015_289_a3
S. I. Adian. New estimates of odd exponents of infinite Burnside groups. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 41-82. http://geodesic.mathdoc.fr/item/TRSPY_2015_289_a3/

[1] Adyan S. I., “Algoritmicheskaya nerazreshimost problem raspoznavaniya nekotorykh svoistv grupp”, DAN SSSR, 103:4 (1955), 533–535 | MR | Zbl

[2] Adyan S. I., “Nerazreshimost nekotorykh algoritmicheskikh problem teorii grupp”, Tr. Mosk. mat. o-va, 6, 1957, 231–298 | MR | Zbl

[3] Adyan S. I., “Rol zakona sokrascheniya pri zadanii polugrupp s sokrascheniem posredstvom opredelyayuschikh sootnoshenii”, DAN SSSR, 113:6 (1957), 1191–1194 | MR

[4] Adyan S. I., “O vlozhimosti polugrupp v gruppy”, DAN SSSR, 133:2 (1960), 255–257 | MR | Zbl

[5] Adyan S. I., “K probleme tozhdestva v assotsiativnykh ischisleniyakh spetsialnogo vida”, DAN SSSR, 135:6 (1960), 1297–1300 | Zbl

[6] Adyan S. I., “Tozhdestva v spetsialnykh polugruppakh”, DAN SSSR, 143:3 (1962), 499–502 | Zbl

[7] Adian S. I., Defining relations and algorithmic problems for groups and semigroups, Proc. Steklov Inst. Math., 85, Amer. Math. Soc., Providence, RI, 1967 | MR | Zbl

[8] Adyan S. I., “Beskonechnye neprivodimye sistemy gruppovykh tozhdestv”, DAN SSSR, 190:3 (1970), 499–501 | Zbl

[9] Adyan S. I., “Beskonechnye neprivodimye sistemy gruppovykh tozhdestv”, Izv. AN SSSR. Ser. mat., 34:4 (1970), 715–734 | MR | Zbl

[10] Adyan S. I., “O nekotorykh gruppakh bez krucheniya”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 459–468 | Zbl

[11] Adyan S. I., “Periodic groups of odd exponent”, Proc. Second Int. Conf. on the Theory of Groups (Aust. Natl. Univ., 1973), Lect. Notes Math., 372, Springer, Berlin, 1974, 8–12 | MR

[12] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR

[13] Adyan S. I., “Periodicheskie proizvedeniya grupp”, Tr. MIAN, 142, 1976, 3–21 | MR | Zbl

[14] Adyan S. I., “Aksiomaticheskii metod postroeniya grupp s zadannymi svoistvami”, UMN, 32:1 (1977), 3–15 | MR | Zbl

[15] Adyan S. I., “O prostote periodicheskikh proizvedenii grupp”, DAN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[16] Adian S. I., “On the word problem for groups defined by periodic relations”, Burnside groups, Proc. Workshop (Univ. Bielefeld, 1977), Lect. Notes Math., 806, Springer, Berlin, 1980, 41–46 | MR

[17] Adyan S. I., “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 46:6 (1982), 1139–1149 | MR | Zbl

[18] Adyan S. I., “Gruppy s periodicheskimi opredelyayuschimi sootnosheniyami”, Mat. zametki, 83:3 (2008), 323–332 | DOI | MR | Zbl

[19] Adyan S. I., “Problema Bernsaida i svyazannye s nei voprosy”, UMN, 65:5 (2010), 5–60 | DOI | MR | Zbl

[20] Adyan S. I., Atabekyan V. S., “O khopfovosti $n$-periodicheskikh proizvedenii grupp”, Mat. zametki, 95:4 (2014), 483–491 | DOI | MR

[21] Adyan S. I., Atabekyan V. S., “Kharakteristicheskie svoistva $n$-periodicheskikh proizvedenii i ikh ravnomernaya neamenabelnost”, Izv. RAN. Ser. mat., 2015 (to appear)

[22] Adyan S. I., Lysënok I. G., “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. mat., 55:5 (1991), 933–990 | MR | Zbl

[23] Adian S. I., Lysenok I. G., “The method of classification of periodic words and the Burnside problem”, Proc. Int. Conf. on Algebra, Pt. 1 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 13–28 | MR

[24] Adyan S. I., Razborov A. A., “Periodicheskie gruppy i algebry Li”, UMN, 42:2 (1987), 3–68 | MR | Zbl

[25] Britton J. L., “The existence of infinite Burnside groups”, Word problems: Decision problems and the Burnside problem in group theory, Stud. Log. Found. Math., 71, North-Holland, Amsterdam, 1973, 67–348 | MR

[26] Britton J. L., “Erratum: The existence of infinite Burnside groups”, Word problems, The Oxford book, v. II, Stud. Log. Found. Math., 95, North-Holland, Amsterdam, 1980, 71 | MR

[27] Burnside W., “On an unsettled question in the theory of discontinuous groups”, Q. J. Pure Appl. Math., 33 (1902), 230–238 | Zbl

[28] Burnside W., “On criteria for the finiteness of the order of a group of linear substitutions”, Proc. London Math. Soc. Ser. 2, 3 (1905), 435–440 | DOI | MR | Zbl

[29] Chandler B., Magnus V., Razvitie kombinatornoi teorii grupp: Ocherk istorii razvitiya idei, Mir, M., 1985 | MR

[30] Delzant T., Gromov M., “Courbure mésoscopique et théorie de la toute petite simplification”, J. Topol., 1:4 (2008), 804–836 | DOI | MR | Zbl

[31] Grigorchuk R. I., “Simmetrichnye sluchainye bluzhdaniya na diskretnykh gruppakh”, Mnogokomponentnye sluchainye sistemy, Nauka, M., 1978, 132–152 | MR

[32] Grindlinger M., “K problemam tozhdestva slov i sopryazhennosti”, Izv. AN SSSR. Ser. mat., 29:2 (1965), 245–268 | MR | Zbl

[33] Gromov M., “Hyperbolic groups”, Essays in group theory, Publ. Math. Sci. Res. Inst., 8, Springer, New York, 1987, 75–263 | MR

[34] Hall M. (Jr.), “Solution of the Burnside problem for exponent six”, Ill. J. Math., 2 (1958), 764–786 | MR | Zbl

[35] Ivanov S. V., “The free Burnside groups of sufficiently large exponents”, Int. J. Algebra Comput., 4:1–2 (1994), 1–308 | DOI | MR | Zbl

[36] van Kampen E. R., “On some lemmas in the theory of groups”, Amer. J. Math., 55 (1933), 268–273 | DOI | MR | Zbl

[37] Kesten H., “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92 (1959), 336–354 | DOI | MR | Zbl

[38] Kleiman Yu. G., “O tozhdestvakh v gruppakh”, Tr. Mosk. mat. o-va, 44, 1982, 62–108 | MR | Zbl

[39] Kostrikin A. I., “O probleme Bernsaida”, Izv. AN SSSR. Ser. mat., 23:1 (1959), 3–34 | MR | Zbl

[40] Kostrikin A. I., “Sendvichi v algebrakh Li”, Mat. sb., 110(152):1 (1979), 3–12 | MR | Zbl

[41] Kostrikin A. I., Around Burnside, Springer, Berlin, 1990 | MR | MR | Zbl

[42] Lysënok I. G., “O nekotorykh algoritmicheskikh svoistvakh giperbolicheskikh grupp”, Izv. AN SSSR. Ser. mat., 53:4 (1989), 814–832 | MR | Zbl

[43] Lysënok I. G., “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. mat., 60:3 (1996), 3–224 | DOI | MR | Zbl

[44] Magnus W., “A connection between the Baker–Hausdorff formula and a problem of Burnside”, Ann. Math. Ser. 2, 52 (1950), 111–126 | DOI | MR | Zbl

[45] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp: Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR

[46] Neumann B. H., “Identical relations in groups. I”, Math. Ann., 114 (1937), 506–525 | DOI | MR | Zbl

[47] Novikov P. S., Ob algoritmicheskoi nerazreshimosti problemy tozhdestva slov v teorii grupp, Tr. MIAN, 44, Izd-vo AN SSSR, M., 1955 | MR | Zbl

[48] Novikov P. S., “O periodicheskikh gruppakh”, DAN SSSR, 127:4 (1959), 749–752 | MR | Zbl

[49] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh. I”, Izv. AN SSSR. Ser. mat., 32:1 (1968), 212–244 | MR | Zbl

[50] Novikov P. S., Adyan S. I., “Opredelyayuschie sootnosheniya i problema tozhdestva dlya svobodnykh periodicheskikh grupp nechetnogo poryadka”, Izv. AN SSSR. Ser. mat., 32:4 (1968), 971–979 | MR | Zbl

[51] Novikov P. C., Adyan S. I., “O kommutativnykh podgruppakh i probleme sopryazhennosti v svobodnykh periodicheskikh gruppakh nechetnogo poryadka”, Izv. AN SSSR. Ser. mat., 32:5 (1968), 1176–1190 | MR | Zbl

[52] Olshanskii A. Yu., “Beskonechnaya prostaya nëterova gruppa bez krucheniya”, Izv. AN SSSR. Ser. mat., 43:6 (1979), 1328–1393 | MR | Zbl

[53] Olshanskii A. Yu., “O teoreme Novikova–Adyana”, Mat. sb., 118(160):2 (1982), 203–235 | MR | Zbl

[54] Olshanskii A. Yu., “Gruppy ogranichennogo perioda s podgruppami prostykh poryadkov”, Algebra i logika, 21:5 (1982), 553–618 | MR

[55] Olshanskii A. Yu., “Periodicheskie faktor-gruppy giperbolicheskikh grupp”, Mat. sb., 182:4 (1991), 543–567 | MR | Zbl

[56] Sanov I. N., “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. LGU. Ser. mat. nauk, 10, 1940, 166–170 | MR | Zbl

[57] Sanov I. N., “Ustanovlenie svyazi mezhdu periodicheskimi gruppami s periodom prostym chislom i koltsami Li”, Izv. AN SSSR. Ser. mat., 16:1 (1952), 23–58 | MR | Zbl

[58] Shirvanyan V. L., “Nezavisimye sistemy opredelyayuschikh sootnoshenii svobodnoi periodicheskoi gruppy nechetnogo pokazatelya”, Mat. sb., 100(142):1 (1976), 132–136 | MR | Zbl

[59] Schur I., “Über Gruppen periodischer linearer Substitutionen”, Sitzungsber. K. Preuss. Akad. Wiss., 1911 (1911), 619–627 | Zbl